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Abstract

A numerical model for simulating freshwater and seawater flow in highly stratified
estuaries was developed and validated. The governing equations for one-dimensional,
two-layer, and time-dependant shallow water flow were derived from the laws of
conservation of mass and linear momentum. The resulting equations are written
as a system of non-linear, hyperbolic, partial differential equations. To solve this
system, a finite volume method was used; specifically, a well-balanced Q-scheme for
two-layer shallow water flow in channels with irregular geometry was extended to
resolve additional friction and entrainment terms. Particular emphasis was placed on
the selection and validation of appropriate boundary conditions and the numerical
treatment of wet-dry transitions.

To assess the performance of the proposed model and examine the main physical
processes, a field sampling campaign was conducted during 2014-15 in the Rječina
River estuary. Entrainment rates were estimated from observed salinity profiles and
flow rates by a two-layer box model. Interfacial friction factors were determined by
fitting the numerical results to observed salt-wedge profiles. A steady arrested salt-
wedge model, based on a finite difference method, was used for this purpose. When
the interfacial friction factor was calibrated, the numerical results agreed favourably
against field observations for both steady and variable flow conditions.

The combination of field observations and numerical experiments allowed for a
more detailed investigation of the main physical processes in microtidal estuaries.
The salt-wedge dynamics in the Rječina River estuary depends mainly on the river
flow rate, while the sea-level and channel geometry impose a second-order control.
Furthermore, a strong stratification persisted under all observed flow conditions.
Finally, none of the existing entrainment and interfacial friction laws proved adequate;
therefore, new empirical equations were proposed.

Keywords: estuaries, salt-wedge, shallow water flow, Q-scheme, finite volume
method, stratification, entrainment, interfacial friction.



Prošireni sažetak

Izrađen je i validiran numerički model za simuliranje tečenja slane i slatke vode u
izrazito stratificiranim ušćima. Vladajuće jednadžbe za jednodimenzijski, dvoslojni i
nestacionarni tok plitkih voda u koritima nepravilne geometrije, izvedene su iz zakona
očuvanja mase i količine gibanja. Rezultirajuće jednadžbe čine sustav nelinearnih,
hiperboličnih, parcijalnih diferencijalnih jednadžbi, a mogu se zapisati u vektorskom
obliku kao zakon održanja s izvornim članom.

Za rješavanje navedenih jednadžbi koristila se metoda konačnih volumena, odnosno
dobro balansirana Q-shema za dvoslojno tečenje u koritima nepravilne geometrije,
koja je modificirana kako bi se uključili dodatni članovi koji opisuju trenje i vertikalno
miješanje. Posebna pozornost je posvećena validiranju fizikalno relevantnog nizvodnog
rubnog uvjeta, definiranog dubinom gornjeg sloja na ušću rijeke ili na mjestima
naglog suženja korita. Također je riješen i problem pomicanja fronte donjeg sloja,
koji u numeričkom smislu predstavlja prijelaz između suhog i mokrog dijela domene.
Numerički model je verificiran za slučaj prizmatičnog korita s ravnim dnom, za
koji postoje analitička rješenja te za slučaj neprizmatičnog korita, usporedbom s
jednostavnijim stacionarnim numeričkim modelom temeljenim na metodi konačnih
razlika, odnosno implicitnoj trapeznoj metodi.

Terenska mjerenja na ušću Rječine provedena su tijekom 2014. i 2015. godine pri
različitim razinama mora i protocima rijeke, pri čemu su mjerena fizikalna svojstva
vode na nekoliko profila duž ušća. U tu svrhu, prvenstveno su se koristile CTD sonde
koje mjere tlak, temperaturu i električnu provodljivost po dubini vode. Iz navedenih
podataka izračunati su saliniteti i gustoće vode pomoću poznatih empirijskih izraza.
Ulazni protoci određivali su se prema razini vode na pragu uzvodno od ušća, za koji
je poznata protočna krivulja. Akustični Dopplerov strujomjer se povremeno koristio
kako bi se validirali uzvodni protoci rijeke i izračunate brzine u pojedinim slojevima.

Intenziteti miješanja među slojevima određeni su pomoću dvoslojnog Knudsenovog
modela na osnovu izmjerenih protoka i saliniteta vode u svakom sloju. Koeficijenti
trenja na razdjelnici slojeva dobiveni su metodom prilagodbe numeričkih rezultata
izmjerenim dubinama haloklina duž ušća Rječine. Uz kalibrirane koeficijente trenja,
poklapanja numeričkih rezultata i terenskih mjerenja su zadovoljavajuća, što ukazuje
na vrlo dobru prognostičku moć predloženog modela u izrazito stratificiranim uvjetima.



Kombinacija terenskih mjerenja i numeričkih simulacija omogućila je detaljniji
uvid u relevantne fizikalne procese u izrazito stratificiranim ušćima. Pokazalo se
kako protok rijeke ima dominantni utjecaj na dinamiku slanog klina, dok u manjoj
mjeri utjecaj imaju razina mora i geometrija korita. Smanjenje protoka rijeke te
podizanje morske razine može uzrokovati jači prodor slanog klina uzvodno. Također,
tijekom svih mjerenja zabilježena je kontinuirana stratifikacija stupca vode, neovisno
o mareografskim i hidrološkim uvjetima.

Postojeći parametrizacijski modeli za intenzitet miješanja u stratificiranim sred-
inama nisu se pokazali dovoljno pouzdanima na ušću Rječine. Detaljnije analize
sugeriraju kako je intenzitet miješanja moguće zadovoljavajuće prognozirati tek
na osnovu kombinacije poznatih bezdimenzionalnih parametara toka i koeficijenta
trenja. Parametrizacijski modeli za koeficijent trenja na razdjelnici pokazali su se još
manje pouzdanima. Analize izmjerenih podataka sugeriraju kako se koeficijent trenja
povećava s protokom rijeke, što je u suprotnosti s postojećim saznanjima. Zaključno,
predloženi su novi empirijski izrazi za prognoziranje intenziteta miješanja i koeficijenta
trenja na razdjelnici u izrazito stratificiranim ušćima.

Ključne riječi: ušće, slani klin, jednadžba plitkih voda, Q-shema, metoda konačnih
volumena, stratifikacija, intenzitet miješanja, koeficijent trenja.
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Contents
1.1 Background and Motivation . . . . . . . . . . . . . . . . . 2
1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective of the thesis . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Abstract

This chapter gives an introduction to the thesis. A general background and motivation
for researching the numerical modelling of highly stratified estuaries is presented.
Next, the hypothesis, objectives and main research questions are stated and discussed.
Finally, a short thesis outline is available at the end of the chapter.
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1. Introduction

1.1 Background and Motivation

Estuaries are transitional areas between river and marine environments. They are
influenced by different forcing mechanisms, such as tides, waves, river flows, and even
the channel geometry [85]. Freshwater in estuaries flows towards the river mouth over
a denser underlying seawater, which intrudes upstream. Depending on the intensity
of vertical mixing between these layers, estuaries are classified as [30]:

a) highly stratified estuaries,

b) partially mixed estuaries,

c) well-mixed estuaries.

Figure 1.1 illustrates the main differences between these types: (a) highly stratified
estuaries are characterized by a strong vertical salinity and density stratification,
i.e., an upper layer of freshwater separated from a lower layer of seawater by a
thin interfacial layer (halocline and pycnocline), (b) partially mixed estuaries are
characterized by both horizontal and vertical salinity and density gradients, and (c)
well-mixed estuaries are characterized by horizontal salinity and density gradients
and nearly uniform water column.

In this thesis the focus is placed only on highly stratified estuaries, which, according
to traditional classification by Hansen and Rattray [42], consist of salt wedges and
fjords. Salt-wedge estuaries are considered the most dynamic and variable of all
estuarine systems [36]. They usually develop at the mouths of coastal rivers, where
the ratio of river to tidal flow is high enough to maintain a strong density stratification
[30]. Highly stratified conditions are therefore preserved by either high river flow
rates or weak tidal dynamics. Under ideal conditions, an upper layer of freshwater is
separated from a lower seawater wedge by a sharp halocline, with the overriding flow
pushing the underlying one towards the river mouth until an equilibrium is achieved
between the buoyancy pressure gradient, friction forces, and inertial forces [84]. For
steady-flow conditions, i.e., constant sea-levels and river flow rates, a so-called arrested
salt-wedge is eventually established, where only the upper layer is active. However,
because of constant tidal motions, steady states rarely occur in natural estuaries.

2
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Figure 1.1: Types of estuaries depending on the intensity of vertical mixing: (a) highly
stratified estuary, (b) partially mixed estuary, and (c) well-mixed estuary, as described in
[30] and [85].
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1. Introduction

Fjords, on the other hand, are deep estuaries often containing shallow sills that
separate them from the ocean. In contrast to salt-wedges, the salinity difference
between the upper and lower layer is weaker. They do, however, exhibit similar
dynamic characteristics as salt-wedges [36].

Pronounced vertical stratification is found in many salt-wedge estuaries worldwide.
Recent studies have focused mostly on macrotidal salt-wedge estuaries, such as
the Hudson [77], Fraser [64], Merrimack [78], and Snohomish River [104]. In these
environments, high river flow rates maintain a strong stratification by suppressing
the vertical mixing caused by tidal dynamics. In fact, the salt-wedge structure in
the Fraser Estuary is observed only during high river flow rates [64]. Whereas, in
microtidal seas, where tidal amplitudes do not exceed 2 m [48], estuaries are highly
stratified even for relatively low river flow rates. A typical example of a microtidal
salt-wedge estuary is the Ebro River in Spain [48] or Neretva River in Croatia [62].

Understanding physical processes in salt-wedges is important in many engineering
and environmental activities, such as predicting the impact of channel dredging or
widening in coastal areas, planning freshwater intake positions, defining structural
measures for seawater intrusion, or managing pollutant and sediment transport.
Furthermore, important agricultural lands are regularly developed around estuaries
(e.g., Neretva River in Croatia [62]); therefore, the mechanism of salt-wedge intrusion is
not a mere hydraulic curiosity, but an integral part of social and economic development.

The mechanism of salt-wedge dynamics, in particular the bottom layer water
renewal, is also important from the ecological and water-quality point of view.
The halocline divides an estuary in two regions that differ not only in contrasting
salinity, but also in temperature, turbidity, turbulence, and direction of the flow.
Furthermore, hypoxic or anoxic conditions may develop in the stagnant lower layer
of arrested salt-wedges [36].

Many approaches are available when modelling the dynamics of salt-wedge es-
tuaries, namely: analytical models, empirical equations, one-dimensional (1D), two-
dimensional (2D) and three-dimensional (3D) numerical models, as well as laboratory
experiments. Today, 3D numerical models are most frequently used to simulate various
dynamic estuarine processes [105, 60, 78, 104]; although, their computational cost
may sometimes become too expensive for engineering purposes. This is especially true

4



1. Introduction

for salt-wedge estuaries, where a fine vertical discretization is needed to adequately
resolve a thin interface between the layers.

Three-dimensional numerical models may be necessary to realistically simulate
partially or well-mixed estuaries, where the main physical properties vary in both
the vertical and horizontal direction. However, one-dimensional two-layer numerical
models should accurately resolve the main physical processes in salt-wedge estuaries if
the stratification is strong enough to suppress the vertical mixing, and the interfacial
layer is much thinner than the upper and lower layer.

1.2 Hypothesis

Considering the current state of research in coastal and estuarine numerical modelling,
the following hypothesis is stated:

Under highly stratified conditions, it is justified to use a one-dimensional two-layer
shallow water model to predict the main physical processes in salt-wedge estuaries.

This hypothesis is based on (a) the fact that the vertical exchange between the
layers in salt-wedges is minimal compared to the extent of advective processes within
each layer [36], (b) current trends in the literature that show how 1D two-layer
numerical models accurately capture the main features of the exchange flow in sea
straits, such as the Strait of Gibraltar [18], and (c) the assumption that salt-wedge
estuaries show more similarities to the exchange flow in sea straits than to partially
or well-mixed estuaries. The hypothesis was tested by developing a one-dimensional
two-layer shallow water model and then comparing numerical solutions against field
observations of a salt-wedge in the Rječina River estuary in Croatia.

The main similarity between salt-wedge estuaries and the exchange flow in sea
straits is the salinity and density structure characterized by an upper layer of less
dense fluid flowing over a lower layer of more dense fluid, which are separated by a
thin interfacial layer. There are, however, some notable differences between them.
First, salt-wedges are under the influence of many different forcing mechanisms, such
as tidal, fluvial, and estuarine. The upper layer in salt-wedge estuaries is usually
more active than the lower one, which can be motionless or flow in the same or the
opposite direction. The salt-wedge flow, in contrast to the exchange flow in sea straits,

5



1. Introduction

is more sensitive to the interfacial shear stress. And finally, although the vertical
mixing in salt-wedge estuaries is reduced by a strong stratification, it may nonetheless
exhibit significant influence on the lower layer circulation.

1.3 Objective of the thesis

The objective of this thesis is to develop a 1D two-layer numerical model for simulating
the dynamic response of salt-wedge estuaries under the influence of variable river flow
rates and sea levels. A good predictive model should only need river flow rate Q,
fluid density ρ, and total depth at the mouth H as input parameters. Furthermore,
the model should be stable, accurate, and capable of simulating both steady and
highly variable flow conditions, including shock propagations.

Considering the hypothesis and objectives of this thesis, the main research question
was:

1. How well can a 1D numerical model predict salt-wedge dynamics under various
flow conditions?

However, to develop a suitable numerical model, several more practical questions
also required an answer:

2. Which boundary conditions should be imposed in a 1D two-layer numerical
model for salt-wedge estuaries?

3. How to numerically treat the transition between the wet and dry part of the
domain in channels with irregular geometry?

4. How to deal with the possible loss of hyperbolicity when interfacial instabilities
appear?

5. How to include and approximate friction and vertical mixing?

The last question posed additional challenges, not only when approximating these
terms in a numerical model, but also when computing interfacial friction factors
and entrainment rates based on known flow parameters. Therefore, an additional
aim was to critically evaluate the existing parametrization equations for interfacial
processes in stratified flow.

6



1. Introduction

1.4 Thesis outline

The thesis is organized as follows. Chapter 2 presents systematized published
studies on salt-wedge estuaries, two-layer numerical models, interfacial friction,
and vertical mixing.

Chapter 3 derives a system of governing equations for salt-wedge estuaries
represented by a two-layer shallow water flow. Chapter 4 defines and discusses
the numerical schemes used to solve the governing equations. This chapter presents
two numerical schemes; the first one is based on a finite difference method (FDM),
and used to estimate a steady-state flow in arrested salt-wedges, and the second
one is based on a finite volume method (FVM), and used to solve a time-dependant
salt-wedge flow. Chapter 5 verifies both numerical schemes against analytical models
and between each other. Furthermore, it investigates the model sensitivity on the main
input parameters, namely friction, entrainment, and density difference. Chapter
6 describes the Rječina River estuary and provides detailed information on the
methodology for field observations of the salinity, temperature, density, flow rate,
velocity, and sea level, as well as a method for estimating the vertical mixing.

The results from applying the proposed numerical models on the salt-wedge in
the Rječina River estuary are given in Chapter 7. The model was validated by
comparing the computed salt-wedge profiles against measured interface depths along
the estuary under different flow conditions.

Based on a combination of field observations and numerical simulations, Chapter 8
discusses the key physical processes in microtidal salt-wedge estuaries. An important
part of this chapter is the mechanism of interfacial processes and the parametrization
of interfacial friction factor λi and entrainment rate E.

Finally, Chapter 9 summarizes and concludes the thesis by presenting key
scientific contributions and a list of possible future work topics.

7
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Abstract

This chapter presents the literature review of two-layer hydraulic theory and numerical
models for salt-wedge estuaries. Furthermore, published studies on interfacial physical
processes in stratified environments, namely interfacial friction and entrainment,
are also presented and discussed.
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2.1 Two-layer hydraulic theory

Two-layer hydraulic theory is based on the shallow water equations (SWE) and the
assumption that a salt-wedge is adequately represented by two-layers of immiscible
fluid separated by a pycnocline of zero thickness. Schijf and Schönfeld [86] and
Stommel and Farmer [91] were among first to develop a mathematical theory for
two-layer flows in salt-wedge estuaries.

The governing equations, for a two-layer shallow water flow in channels with
rectangular cross-sections of constant width (Fig. 2.1), are written as a coupled
system of continuity and momentum equations, as follows [86]:

∂h1

∂t
+ u1

∂h1

∂x
+ h1

∂u1

∂x
= 0, (2.1)

∂h2

∂t
+ u2

∂h2

∂x
+ h2

∂u2

∂x
= 0, (2.2)

∂u1

∂t
+ g

∂h1

∂x
+ g

∂h2

∂x
+ u1

∂u1

∂x
+ g

db
dx + τi − τs

ρ1h1
= 0, (2.3)

∂u2

∂t
+ rg

∂h1

∂x
+ g

∂h2

∂x
+ u2

∂u2

∂x
+ g

db
dx + τb − τi

ρ2h2
= 0, (2.4)

where coordinate x refers to the axis of the channel, t is time, g is acceleration of
gravity, h1 and h2 are the respective upper and lower layer thickness, u1 and u2 are
the respective upper and lower layer velocity in the direction of the flow, r = ρ1/ρ2 is
the ratio of the upper ρ1 to lower ρ1 layer density, b is the channel bed elevation, and
τs, τi, and τb are the respective surface, interface and channel bed shear stress.

Although Stommel and Farmer [91] suggested some general principles for two-layer
flow, it was not until a few decades later that a more systematic theory was presented.
Armi and Farmer, in a series of studies [4, 5, 31], further developed the hydraulic
theory for two-layer flows. They focused specifically on the issue of flow regimes and
the influence of channel contractions, sills, and their combination.

Armi [4] described flow regimes in a two-layer exchange flow similarly as in a single
layer. The only difference is that, instead of a regular Froude number Fr = u1/

√
gh1,

a composite Froude number G was used:

G2 = Fd2
1 + Fd2

2 − (1− r)Fd2
1Fd

2
2, (2.5)
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Figure 2.1: Longitudinal scheme of a two-layer salt-wedge flow, as defined by Schijf and
Schönfeld [86].

where
Fd1 = u1√

g(1− r)h1
and Fd2 = u2√

g(1− r)h2
(2.6)

are the respective upper and lower layer densimetric Froude numbers for channels
with rectangular cross-sections. When G2 < 1, the flow is internally subcritical,
indicating that the baroclinic perturbations, e.g., internal waves, propagate in both
directions. On the other hand, when G2 > 1, the flow is internally supercritical,
and all internal waves propagate only in the downstream direction. The hydraulic
control is established at a point where the flow is internally critical, which occurs
for G2 = 1. In the latter case, a unique relationship exists between the flow rate
and the interfacial depth [4]. When only the upper layer is active, the densimetric
Froude number Fd = Fd1 is used instead of G.

Armi and Farmer [5] and Farmer and Armi [31] further examined the influence
of channel contractions and a combination of sills and contractions in a two-layer
exchange flow. They found that a critical condition was established at the narrowest
and shallowest section of the channel. However, the presence of relatively strong
barotropic flow, such as tides or river waves, may move the position of the hydraulic
control upstream or downstream.

Although these findings are true for flows in sea straits, in which both layers
are equally active and flow in opposite directions, they also apply for salt-wedge
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flows [73]. Pawlak and Armi [73] examined in more details two-layer hydraulics
in salt-wedge estuaries, and found that the friction may also influence the exact
position of the hydraulic control. In particular, increased friction may move the
control downstream from the narrowest section.

2.1.1 Arrested salt-wedge models

Early investigators used the two-layer theory to develop simple analytical models and
predict the arrested salt-wedge intrusion length [43, 91]. These models were derived
from SWE (2.1)-(2.4) by assuming a prismatic channel, rectangular cross-sections,
and horizontal bed slope, as well as neglecting lower layer dynamics and bed friction.
Under these assumptions, the salt-wedge length L was found to be a function of
interfacial friction factor λi and river densimetric Froude number F0 [43]:

L = H0

4λi

(
3F 2/3

0 − 6
5F

4/3
0 − 2 + 1

5F
−2
0

)
, (2.7)

with F0 = u0/
√
g(1− r)H0, where u0 and H0 are the respective river velocity and

depth, upstream from the salt-wedge tip.
In subsequent years, various authors extended and improved these simple arrested

salt-wedge models. Rattray and Mitsuda [79] developed a 1D steady two-layer model,
which accounts for bed slope and bed friction. Dermissis and Partheniades [29]
also considered the interfacial and bed friction, and they analysed dominant shear
stresses in arrested salt-wedges.

Balloffet and Borah [7] developed a 1D steady two-layer numerical model by
including the interfacial and bed friction, and assuming that a river channel can be
represented by a series of rectangular cross-sections with variable widths. They found
that, when λi is calibrated, the model accurately predicts the arrested salt-wedge
length in the Mississippi River.

Arita and Jirka [2, 3] extended the existing models to include the bed friction,
vertical mixing, and lower layer convective acceleration. In this way the circulation in
the lower layer, that occurs as a results of mixing, was included. Furthermore, they
proposed a semi-empirical friction model, which links the entrainment rate E with
λi. Grubert [40, 41] developed a similar model to Arita and Jirka’s by considering
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turbulent mixing, which allowed for the momentum transport in both directions, from
the lower layer to the upper one, and vice versa.

Finally, Sorgard [88] found that the thickness of the interfacial layer increases
with the intensity of vertical mixing. Sorgard, therefore, developed a 1D three-layer
numerical model, that includes the interfacial, bed and wind shear stress, mixing
between the layers, and rectangular cross-sections of variable width. Sorgard [88]
also found a good agreement between the three-layer model and field observations in
the Glomma River estuary in Norway. Hogg et al. [46] further extended Sorgard’s
model to allow densities in the interfacial layer to vary according to the intensity
of vertical mixing.

Unfortunately, arrested salt-wedge models have limited application in field condi-
tions, and only time-dependant models can adequately capture all relevant physical
processes in salt-wedge estuaries.

2.1.2 Time-dependant salt-wedge models

Dazzi and Tomasino [28] extended the Schijf and Schönfeld’s theory [86], and developed
a first 1D time-dependent two-layer numerical model to study salt-wedge dynamics
in the Po River. Although their model described the main features of the tidal flow,
it neglected the convective acceleration terms in the momentum equations.

Since then, several two-layer models solving full SWE successfully simulated the
salt-wedge dynamics under gradually changing flow conditions. Sierra et al. [87] used
a commercial MIKE 12 model to simulate salt-wedge dynamics in the Ebro River
estuary. The model was calibrated with field observations and reproduced a general
behaviour of the estuary, especially the salt-wedge intrusion length. Ljubenkov and
Vranješ [62] developed a 1D two-layer numerical model based on a finite element
method (FEM) and successfully applied it to the Neretva River [62] and Jadro River
[61] estuaries in Croatia. Liu et al. [59] applied a 1D two-layer numerical model based
on a FDM and analysed the salt-water intrusion in the Shinkawa River in Japan.
Although these models show good agreement with field observations for gradual
changes in tidal and river flows, they are not shock-capturing; therefore, they are
unable to correctly describe internally transcritical flows, which may occur under
highly dynamic conditions at the mouth, sills, or channel contractions [5, 31].
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Recently, several studies presented and discussed shock-capturing numerical models
for single-layer shallow water flows, which were based on a FVM and a well-balanced
Q-scheme [9, 101]. Castro et al. [18] extended these models and presented a general
formulation for a 1D two-layer exchange flow in channels with irregular geometry.
Their model was successfully validated against analytical steady-state solutions [18],
and used to simulate the exchange flow through the Strait of Gibraltar. The numerical
solutions agreed favourably with the observed data, especially for the propagation
of internal bores [19].

Two-dimensional two-layer shallow water models can also resolve irregular and
variable channel geometry (e.g., [57]). However, in regulated channels, such as the
Rječina River estuary, average cross-section widths are fairly uniform and the flow is
mainly unidirectional; hence, a simpler 1D two-layer model that accounts for irregular
cross-sections of the channel should be adequate.

2.2 Interfacial processes

The stratification and the stability of internal waves govern the interfacial processes in
stratified flows [1]. The stratification is especially important in estuarine environments
because it controls the intensity of vertical mixing. In fact, a strong stratification
may reduce vertical mixing by several orders of magnitude [90]. Reduced mixing in
highly stratified estuaries, however, usually results in much stronger vertical shear
stresses in comparison to partially or well-mixed estuaries [36]. Although vertical
mixing is suppressed by stratification, strong shear stress at the interface is known
to locally intensify turbulent production and mixing between the layers through the
formation of Kelvin-Helmholtz (K-H) instabilities [64].

The stability of internal waves govern both the shear stress and the vertical
mixing. For low and stable flow conditions, the interface between layers remains
smooth and laminar. When the freshwater velocity rises, internal waves form at
the interface, which increases the apparent roughness. If the velocity exceeds a
certain value, stability is compromised, and the internal waves brake and generate
mixing, causing an interfacial layer to develop. Once a stable interfacial layer is
established, density and velocity gradients become weaker, internal waves stabilize,
and the turbulent mixing is reduced. The interfacial shear stress varies according
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to the stage of the interfacial layer development under the influence of turbulence
generated at the bed and the interface [1].

Vertical mixing in two-layer flow is classified either as entrainment or turbulent
mixing [15]. When the interfacial layer is in a subcritical state, entrainment mixing
takes place. If one of the layers is non-turbulent, the one-way process occurs from a
non-turbulent to a turbulent layer (pure entrainment). If both layers are turbulent,
a two-way process occurs, usually called net entrainment, which is computed as the
difference between the rate of upward and downward entrainment. Turbulent mixing
occurs when the interfacial layer is in a critical or supercritical state, with equal
amounts of fluid being exchanged between the layers [41]. Sargent and Jirka [84]
found that the turbulent energy in salt-wedges is larger in freshwater layer than
in the underlying salt-water wedge. This difference results in entrainment directed
from the lower to the upper layer.

Recent findings [64] suggest that turbulent production and mixing in salt-wedge
estuaries are adequately described by the respective interfacial friction factor λi and
entrainment rate E. The key question, however, is how to quantify these factors
based on known flow parameters? The following subsections explore the existing
equations for λi and E in more details.

2.2.1 Interfacial friction

The quadratic friction law defines the interfacial shear stress τi as

τi = λiρ1∆u2, (2.8)

where λi is the interfacial friction factor (equal to 1/8 of the Darcy-Weisbach friction
factor f), ρ1 is the upper layer fluid density, and ∆u = u1 − u2 is the difference
between the upper and lower layer velocities.

A comprehensive review of λi is given by Karelse et al. [51], Abraham et al. [1], and
Arita and Jirka [2]. Many attempts have been made to combine data from different
sources and find the dependence of λi on flow parameters. Notable examples [51, 94, 2]
considered a densimetric Froude number Fd, Reynolds number Re = u1Rh,1/ν (where
Rh,1 is hydraulic radius and ν is kinematic viscosity), or Keulegan number K = ReFd2.
Unfortunately, because of extensive data scattering around the proposed equations,
a commonly accepted friction law is still not established.
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Based on laboratory experiments, several authors [43, 1] found that λi reduces
with increasing Re. Those experiments, however, are valid only for laminar flow and
small Re, and therefore are unsuitable for field conditions.

Lofquist [63] carried out extensive experiments in stratified flow, where Re ranged
from 103 to 104. His results suggest that interfacial shear stress depends both on
Re and Fd. The experiments also showed that both turbulent τT and viscous τV
shear stress contribute to the total interfacial shear stress τi, and that the turbulent
contribution increases with Re and Fd.

Tamai [94] compiled laboratory and field data from several estuaries in Japan
and proposed that λi is proportional to (ReFd5)−1/2. The scattering of the compiled
data, however, was too extensive, especially at large Re.

Dermissis and Partheniades [29] found that correlating λi with either Re, Fd, or
K resulted in wide scattering of the observed data. They minimized the scattering by
linking λi with ReFr2, with additional independent parameter ∆ρ/ρ. Similarly to
previous studies, the proposed constitutive model lacked validation at large Re .

Arita and Jirka [2] assumed that λi is proportional to E, and proposed a new
semi-empirical friction model (Fig. 2.2). The proposed equation (2.9) consisted of
laminar (viscous) and turbulent contribution, and was probably inspired by the Moody
diagram for friction flows in pipes [68]. As the viscous shear stress is dominant for
Re < 104, Eq. (2.9) suggests that λi is reduced as Re increases. Namely, when Re
increases, the flow becomes more turbulent, and τT and τV become equally important;
hence, λi should be a function of both Re and Fd. As Re increases even further, τT
becomes dominant, and λi gradually becomes independent from Re and increases
with Fd. Arita and Jirka [2] proposed the following equations to be solved:

λi = 0.076
1− Ri√

Ri2 +Ri2cr

+ 2
Re

z1

δu
, (2.9)

with
δu
z1

=
(500
Re

)1/2
+ Ricr√

Ri2 +Ri2cr

[
1−

(500
Re

)1/2]
, (2.10)

where Ricr = 1/4 is the critical Richardson number and Ri is the bulk Richardson
number, defined as

Ri = g(1− r)h1

∆u2 . (2.11)
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Figure 2.2: Arita and Jirka’s [2] friction law; interfacial friction factor λi dependence on
ReFd2.

Note that for the arrested salt wedge, u2 ≈ 0; therefore, ∆u ≈ u1 and Ri ≈ Fd−2.
Arita and Jirka [2] acknowledged, however, that the dependence of λi on governing

parameters for the transition between the laminar and turbulent states is purely
empirical. Furthermore, Sargent and Jirka [84] found surprisingly high viscous
contribution in the total stress in their salt-wedge experiments. They suggested
that the stratified flow may experience local laminarization at the interface even
at large Re numbers, which makes the efforts to derive a suitable parametrization
even more complicated. Although the model by Arita and Jirka (Fig. 2.2) shows
good agreement with laboratory data, it suffers from insufficient data sets from the
field, which are needed to instil more confidence and assess its accuracy for large
Reynolds numbers (Re > 104).

Field studies are scarce, unfortunately, and they are usually limited to only a few
single values (e.g., [89, 64, 62, 61]). The main difficulties in obtaining a relevant set
of λi from the field can be identified in (a) time-dependent flow conditions in natural
estuaries, (b) inability to conduct measurements under systematic variation of the
main flow parameters, and (c) high sensitivity of λi to the slope of the interface, which
can sometimes be difficult to accurately measure in the field.
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In recent years, many authors [76, 46] who studied two-layer models showed
that numerical solutions are sensitive to λi, and that more field measurements are
needed to validate existing friction equations [88, 35]. Unfortunately, since Arita
and Jirka in 1987 [2] no attempts were made to derive a suitable parametrisation of
interfacial friction factor, and no additional data sets from the field were provided
to re-evaluate existing equations.

2.2.2 Entrainment

A good review of entrainment in stratified flows can be found in [26, 40, 32]. Earlier
studies mainly focused on the entrainment parametrization, i.e., the relationship
between the governing non-dimensional parameters, such as Fd or Ri, and entrainment
rate E, defined as

E = we
∆u, (2.12)

where we is the entrainment velocity.
Christodoulou [26] compiled the data from previous experiments on mixing in

stratified flows. Based on flow regimes he proposed different equations; for low Ri,
entrainment rate was found to be constant, but as Ri increases, different power law
dependencies were found between E and Ri, depending on the mixing mechanism.
All entrainment equations suggest that E reduces with increasing Ri, so that

E ∝ Ri−a, (2.13)

where a is a positive power law coefficient, which varies according to the flow regime.
Fernando [32] reviewed numerous published entrainment equations, including

the ones by Christodoulou [26], and found little or no consensus between them.
Furthermore, depending on the type of stratified flow, the shear entrainment rate
E∗ = we/u∗ is sometimes used instead of E, and the shear Richardson number
Ri∗ = g(1− r)h1/u

2
∗ instead of Ri, where u∗ =

√
τ/ρ is the shear velocity. Fernando

suggested that the question of what form of Richardson number is the most appropriate
still seems to be open, even for similar types of flow.

Grubert [41] examined the data from laboratory experiments and the field,
and suggested that no reliable entrainment law can be found based on laboratory
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experiments alone. In field conditions, the shear stress may become the main source
of mixing; not only does it influence the turbulent production, but it can also cause
the development of wave instabilities at the interface [41]. Therefore, he proposed
to link the entrainment rate with flow parameters and the average shear stress, e.g.,
E = f(Ri, λ) or E = f(Ri,Ri∗).

Strang and Fernando [92] studied the turbulent mixing in stratified flow and
discovered that for low Richardson number (Ri < 1.5) Kelvin-Helmholtz waves
develop and entrainment rate is independent from Ri. As Ri increases, a power law
dependence of E on Ri is found (similar to Eq. 2.13), and interfacial instabilities
gradually change from K-H to asymmetric Holmboe waves (3.2 < Ri < 5.8), then
to symmetric Holmboe waves (Ri > 5.8).

Cenedese and Aducce [24] presented the most recent parametrisation for entrain-
ment rate, which is based on bulk flow parameters. In this study, E is linked to
non-dimensional bulk parameters, which were averaged vertically and longitudinally.
Based on laboratory and ocean data, they derived the following empirical equation
for the entrainment rate based on Fd and Re (Fig. 2.3):

E = min +AFdα
1 + AC (Fd+ Fd0)α , (2.14)

where the best fit with the experimental and field data was found for min = 4×10−5,
A = 3.4×10−3, Fd0 = 0.51, α = 7.18, and C = f(Re).

Recent studies, however, focused more on the fundamental understanding of the
complex interaction between the stratification, interfacial shear, and turbulent mixing
[92, 37, 78]. The local strength of stratification is usually quantified by a squared
Brunt-Väisälä or buoyancy frequency N2, defined as follows [90]:

N2 = −g
ρ̄

∂ρ(z)
∂z

, (2.15)

where ρ̄ is the mean density, and ρ(z) is the density at depth z. The shear Sh can
be expressed in the same units (s−2) as follows [90]:

Sh = ∂u(z)
∂z

. (2.16)

Shear and stratification influence the turbulent mixing in opposite ways; stronger
stratification dampens the turbulent energy, whereas the shear stress initiates the
production of the turbulent energy and increases the mixing [90].
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Figure 2.3: Cenedese and Adduce’s [24] entrainment law; entrainment rate E dependence
on densimetric Froude number Fd.

The ratio of stratification and shear stress is expressed through the gradient
Richardson number defined as

Rig = N2

S2
h

= −
g
ρ̄
∂ρ(z)
∂z(

∂u(z)
∂z

)2 . (2.17)

Gradient Richardson number therefore provides a more physical interpretation of
the interfacial dynamics; it represents a ratio of stabilizing to destabilizing forces
and indicates whether the flow is prone to instabilities and mixing [90]. As Rig
increases, the effects of stratification becomes more prominent and the turbulent
mixing should be reduced [90].

Numerous studies of interfacial mixing in stratified flows provide valuable in-
sight, but exact mechanisms are not yet completely understood, and quantitative
discrepancies are present when the results are combined [32, 50]. While current
trends in the literature, which use different turbulence closure schemes, are crucial
in understanding the mechanism of turbulent mixing, in many numerical models
λi and E are still determined from bulk flow parameters. This is especially true
in layered shallow water models.
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Abstract

This chapter presents the governing equations for time-dependant two-layer shallow
water flows in salt-wedge estuaries with irregular geometry, including interfacial
friction and entrainment. The resulting equations are written in the vector form as a
system of conservation laws with source terms. Furthermore, several simplifications
are introduced to derive a system of ordinary differential equations for steady two-
layer flows in arrested salt-wedges.
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3.1 Governing equations for time-dependant salt-
wedges

A one dimensional time-dependant flow was assumed, and the fluid consisted of two
layers of different densities. The partial differential equations (PDE) for a two-layer
salt-wedge flow are written as a coupled system of shallow water equations. These
equations, also called the Saint-Venant equations, are derived from the law of the
conservation of mass and linear momentum. They are applied to each layer of a
control volume and then averaged over depth [25].

It is appropriate to define the main notations first (Fig. 3.1 and 3.2). The coordinate
x refers to the axis of the channel, y is the coordinate normal to the axis, z is the
vertical coordinate, and t is time. In general, index j = 1 refers to the upper layer,
whereas j = 2 refers to the lower layer. By describing the two-layer flow by a system
of SWE, the following assumptions or simplifications are introduced [25]:

• The flow is one-dimensional along the channel axis x, and velocity uj(x, t) is
uniform over the layer cross-section:

u1(x, t) = 1
h1(x, t)

∫ b+h2+h1

b+h2
u(x, z, t)dz,

u2(x, t) = 1
h2(x, t)

∫ b+h2

b
u(x, z, t)dz,

where h1(x, t) and h2(x, t) are the respective upper and lower layer thickness,
and b(x) is the channel bed elevation.

• The density ρj(x, t) is also uniform over the layer cross-section:

ρ1(x, t) = 1
h1(x, t)

∫ b+h2+h1

b+h2
ρ(x, z, t)dz,

ρ2(x, t) = 1
h2(x, t)

∫ b+h2

b
ρ(x, z, t)dz,

• The streamline curvature is small and vertical accelerations are negligible; hence,
the pressure pj(x, z, t) is hydrostatic:

p1(x, z, t) = ρ1g (b(x) + h2(x, t) + h1(x, t)− z) ,

p2(x, z, t) = ρ1gh1(x, t) + ρ2g (b(x) + h2(x, t)− z) ,

where g is the acceleration of gravity.
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Figure 3.1: Longitudinal scheme of a two-layer salt-wedge flow including friction and
entrainment in channels with irregular geometry.
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Figure 3.2: Cross-section scheme of a two-layer salt-wedge flow including friction and
entrainment in channels with irregular geometry.
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• The bottom slope is small enough, so that a cosine of angle θ between the
bottom slope and the horizontal is approximated by unity:

cosθ ≈ 1 and sinθ ≈ tanθ ≈ θ.

• Resistance laws adequately estimate viscous effects, i.e. friction and turbulence.

In addition to these general assumption, the atmospheric pressure was assumed to
be constant and equal to zero, and the surface stress was also assumed to be zero,
although this condition can be relaxed if needed.

Furthermore, the respective upper and lower layer cross-section area relates to
the layer thickness and width σ(x, z), as follows:

A1(x, t) =
∫ b+h2+h1

b+h2
σ(x, z)dz, (3.1)

A2(x, t) =
∫ b+h2

b
σ(x, z)dz. (3.2)

The respective surface and interface cross-section width relates to the layer thickness, as
follows:

σ1(x, t) = σ(x, b+ h2 + h1), (3.3)

σ3(x, t) = σ(x, b+ h2). (3.4)

The respective upper and lower layer flow rates are

Q1(x, t) = A1(x, t)u1(x, t), (3.5)

Q2(x, t) = A2(x, t)u2(x, t). (3.6)

Finally, the entrainment velocity we(x, t) denotes the vertical transport velocity
from the lower to the upper layer.

To derive the governing equations for two-layer flow, let us consider a control
volume of fluid Ω between two cross-sections (at xA and xB), which consists of two
fluids of different densities (Fig. 3.3). The cross section surfaces ΓA,1 and ΓB,1, interface
Γi separating the fluids, channel bed/wall Γw, and free water surface Γs bound the
upper layer control volume Ω1. The cross section surfaces ΓA,2 and ΓB,2, interface
Γi, and channel bed Γb bound the lower layer control volume Ω2.
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3. Governing equations for two-layer flow in salt-wedge estuaries
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Figure 3.3: Control volume of a two-layer flow in channels with irregular geometry.

3.1.1 Conservation of mass

The law of conservation of mass states that no mass is generated or annihilated in the

volume Ω, which means that the time rate of change of mass in volume Ω is equal
to the net mass flux through the boundaries of the same volume [97].

Upper layer

The integral form of the law of conservation of mass for the upper layer states

d
dt

∫
Ω1
ρ1dV =−

∫
ΓA,1

ρ1u1 · ndA−
∫

ΓB,1
ρ1u1 · ndA

−
∫

Γi
ρ2we · ndA,

(3.7)

where the left term is the time rate of change of mass in the upper layer volume Ω1,
the first term on the right is the mass inflow in the upper layer through boundary
ΓA,1, the second term is the mass outflow from the upper layer through the boundary
ΓB,1, the third term is the mass inflow from the lower to the upper layer through
the interface Γi, u1 is the upper layer velocity vector, we is the entrainment velocity
vector, and n is the outward unit normal vector.
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3. Governing equations for two-layer flow in salt-wedge estuaries

Under one-dimensional framework, Eq. (3.7) is rewritten in the form of linear
integrals along the channel axis, from xA to xB, as follows:

∫ xB

xA
ρ1
∂A1

∂t
(x, t)dx = −

∫ xB

xA
ρ1
∂Q1

∂x
(x, t)dx+

∫ xB

xA
ρ2we(x, t)σ3(x, t)dx. (3.8)

Assuming that the flow variables are sufficiently smooth, density is constant along
the control volume ρj(x, t) = const., and Ω is arbitrary, Eq. (3.8) is divided by ρ1

and written in differential form as follows:

∂A1

∂t
(x, t) + ∂Q1

∂x
(x, t) = 1

r
we(x, t)σ3(x, t). (3.9)

where r = ρ1/ρ2 is the ratio of upper to lower layer density.

The lower layer

Similarly, the integral form of the law of conservation of mass for the lower layer states

d
dt

∫
Ω2
ρ2dV =−

∫
ΓA,2

ρ2u2 · ndA−
∫

ΓB,2
ρ2u2 · ndA

−
∫

Γi
ρ2we · ndA,

(3.10)

where u2 is the lower layer velocity vector. Equation (3.10) is rewritten in the form
of linear integrals along the channel axis gives:

∫ xB

xA
ρ2
∂A2

∂t
(x, t)dx = −

∫ xB

xA
ρ2
∂Q2

∂x
(x, t)dx−

∫ xB

xA
ρ2we(x, t)σ3(x, t)dx. (3.11)

Again, assuming that the flow variables are sufficiently smooth, density is constant
along the control volume ρj(x, t) = const., and Ω is arbitrary, Eq. (3.11) is divided
by ρ2 and written in differential form as follows:

∂A2

∂t
(x, t) + ∂Q2

∂x
(x, t) = −we(x, t)σ3(x, t). (3.12)

3.1.2 Conservation of linear momentum

The law of conservation of linear momentum results from the Newton’s second law
and states that the time rate of change of the momentum in the control volume Ω
is equal to the total forces acting on the same volume [97].
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3. Governing equations for two-layer flow in salt-wedge estuaries

Upper layer

The integral form of the law of conservation of linear momentum states

d
dt

∫
Ω1
ρ1u1(x, t)dV =−

∫
ΓA,1

ρ1u1(xA, t)u1(xA, t) · ndA

−
∫

ΓB,1
ρ1u1(xB, t)u1(xB, t) · ndA

−
∫

Γi
ρ1u1(x, t)we(x, t) · ndA

−
∫
∂Ω1

p1(x, z, t)n1dA+
∫
∂Ω1

τ1(x, t)dA,

(3.13)

where the first term on the left is the time rate of change of the momentum in

volume Ω1, the first term on the right is the momentum inflow through the boundary

ΓA,1, the second term is the momentum outflow through the boundary ΓB,1, the

third term is the momentum inflow from the lower to the upper layer through the

interface Γi, the fourth term are the pressure forces, n1 is the first component of

the outward unit vector normal to corresponding surfaces, and the last term are

the friction forces due to shear stress τ1(x, t).

The pressure terms are defined as follows [18]:
∫

ΓA,1
p1(x, z, t)n1dA = −ρ1gI1,1(xA, t), (3.14)

∫
ΓB,1

p1(x, z, t)n1dA = ρ1gI1,1(xB, t), (3.15)

∫
Γw
p1(x, z, t)n1dA = −ρ1g

∫ xB

xA
I2,1(x, t)dx, (3.16)

∫
Γi
p1(x, z, t)n1dA = ρ1g

∫ xB

xA
h1(x, t)σ3(x, t) ∂

∂x
(b+ h2)dx, (3.17)

∫
Γs
p1(x, z, t)n1dA = 0, (3.18)

where

I1,1(x, t) =
∫ b(x)+h2(x,t)+h1(x,t)

b(x)+h2(x,t)
[b(x) + h2(x, t) + h1(x, t)− z]σ(x, z)dz, (3.19)

I2,1(x, t) =
∫ b(x)+h2(x,t)+h1(x,t)

b(x)+h2(x,t)
[b(x) + h2(x, t) + h1(x, t)− z]∂σ

∂x
(x, z)dz. (3.20)
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3. Governing equations for two-layer flow in salt-wedge estuaries

The shear stresses consist of bed/wall τw, interfacial τi and surface τs shear stress,
which are defined either by Manning’s equation and roughness coefficient nM or by
quadratic friction law and factor λ, as follows [25]:

τw = −ρ1gn
2
M|u1|u1R

−1/3
h,1

= −ρ1λw|u1|u1,
(3.21)

τi = −ρ1λi|u1 − u2| (u1 − u2) , (3.22)

τs = 0, (3.23)

where λw is the bed/wall friction factor, Rh,1 = A1/P1 is the upper layer hydraulic
radius, and P1 is the upper layer wetted perimeter.

Under 1D framework, the momentum conservation law for the upper layer (Eq. 3.13)
is rewritten in the form of linear integrals along the channel axis as follows:∫ xB

xA
ρ1
∂Q1

∂t
(x, t)dx =−

∫ xB

xA
ρ1
∂(Q1u1)
∂x

(x, t)dx

+
∫ xB

xA
ρ1u1(x, t)we(x, t)σ3(x, t)dx

−
∫ xB

xA
ρ1g

∂I1,1

∂x
(x, t)dx+

∫ xB

xA
ρ1gI2,1(x, t)dx

−
∫ xB

xA
ρ1gh1(x, t)σ3(x, t) ∂

∂x
(b+ h2)dx

+
∫ xB

xA
[τiσ3(x, t) + τwP2(x, t)] dx.

(3.24)

Assuming that the flow variables are sufficiently smooth, density is constant along
the control volume ρj(x, t) = const., and Ω is arbitrary, Eq. (3.24) is divided by
ρ1 and written in differential form as follows:

∂Q1

∂t
(x, t) =− ∂(Q1u1)

∂x
(x, t) + u1(x, t)we(x, t)σ3(x, t)− g∂I1,1

∂x
(x, t) + gI2,1(x, t)

− gh1(x, t)σ3(x, t) ∂
∂x

(b+ h2) + 1
ρ1
τiσ3(x, t) + 1

ρ1
τwP2(x, t).

(3.25)
Equation (3.25) is then rewritten as a function of the conserved variables Qj and
Aj, j = 1, 2 and their derivatives. Note that the dependence on x and t will be left
out where introduced previously to reduce the excess notation. Also, the friction
and entrainment terms are dropped for now and introduced later when the final
form is obtained.

27



3. Governing equations for two-layer flow in salt-wedge estuaries

First, we rewrite Eq. (3.25) without friction and entrainment terms as follows:

∂Q1

∂t
+ ∂

∂x

(
Q2

1
A1

+ gI1,1

)
= gI2,1 − gh1σ3

∂

∂x
(b+ h2). (3.26)

Next, using Liebnitz integral rule [106] for ∂I1,1/∂x gives

∂I1,1

∂x
=
∫ b+h2+h1

b+h2

∂

∂x
[(b+ h2 + h1 − z)σ(x, z)] dz − h1σ3

∂

∂x
(b+ h2)

= ∂

∂x
(b+ h2 + h1)A1 + I2,1 − h1σ3

∂

∂x
(b+ h2) ,

(3.27)

and momentum equation (3.26) is simplified to

∂Q1

∂t
+ ∂

∂x

(
Q2

1
A1

)
= −gA1

∂

∂x
(b+ h2 + h1) . (3.28)

Again, using Liebnitz rule for derivatives of Eq. (3.1) and (3.2) gives

∂A1

∂x
=
∫ b+h2+h1

b+h2

∂σ

∂x
(x, z)dz + σ1

∂

∂x
(b+ h2 + h1)− σ3

∂

∂x
(b+ h2)

= I3,1 + σ1
∂h1

∂x
+ (σ1 − σ3) ∂

∂x
(b+ h2) ,

(3.29)

and
∂A2

∂x
=
∫ b+h2

b

∂σ

∂x
(x, z)dz + σ3

∂

∂x
(b+ h2)

= I3,2 + σ3
∂

∂x
(b+ h2) ,

(3.30)

where
I3,1 =

∫ b+h2+h1

b+h2

∂σ

∂x
(x, z)dz, (3.31)

I3,2 =
∫ b+h2

b

∂σ

∂x
(x, z)dz, (3.32)

therefore, we have

∂h1

∂x
= 1
σ1

∂A1

∂x
− 1
σ1

[
I3,1 + (σ1 − σ3) ∂

∂x
(b+ h2)

]
, (3.33)

and
∂h2

∂x
= 1
σ3

(
∂A2

∂x
− I3,2

)
− db

dx. (3.34)

Using Eqs. (3.33) and (3.34) and after some calculation the momentum equa-
tion (3.28) reads

∂Q1

∂t
+ ∂

∂x

(
Q2

1
A1

)
=− gA1

σ1

∂

∂x
(A1 + A2) + gA1

σ1
(I3,1 + I3,2) , (3.35)
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3. Governing equations for two-layer flow in salt-wedge estuaries

and, finally, we can write the conservative differential form of the upper layer
momentum equation and introduce back the friction and entrainment terms, as follows:

∂Q1

∂t
+ ∂

∂x

(
Q2

1
A1

+ gA2
1

2σ1

)
=− gA1

σ1

∂A2

∂x
+ gA2

1
2

∂

∂x

( 1
σ1

)
+ gA1

σ1
(I3,1 + I3,2)

+ 1
ρ1
τiσ3 + 1

ρ1
τwP2 + Q1

A1
weσ3.

(3.36)

The lower layer

The integral form of the law of conservation of linear momentum for the lower layer
states

d
dt

∫
Ω2
ρ2u2(x, t)dV =−

∫
ΓA,2

ρ2u2(xA, t)u2(xA, t) · ndA

−
∫

ΓB,2
ρ2u2(xB, t)u2(xB, t) · ndA

−
∫

Γi
ρ2u2(x, t)we(x, t) · ndA

−
∫
∂Ω2

p2(x, z, t)n1dA+
∫
∂Ω2

τ2(x, t)dA.

(3.37)

The pressure terms in the lower layer are defined as follows [18]:∫
ΓA,2

p2(x, z, t)n1dA = −ρ1gh1(xA, t)A2(xA, t)− ρ2gI1,2(xA, t), (3.38)

∫
ΓB,2

p2(x, z, t)n1dA = ρ1gh1(xB, t)A2(xB, t) + ρ2gI1,2(xB, t), (3.39)∫
Γb
p2(x, z, t)n1dA = −ρ1g

∫ xB

xA
h1(x, t)I3,2(x, t)dx− ρ2g

∫ xB

xA
I2,2(x, t)dx (3.40)

∫
Γi
p2(x, z, t)n1dA = −ρ1g

∫ xB

xA
h1(x, t)σ3(x, t) ∂

∂x
(b+ h2)dx, (3.41)

where
I1,2(x, t) =

∫ b+h2

b
[b(x) + h2(x, t)− z]σ(x, z)dz, (3.42)

I2,2(x, t) =
∫ b+h2

b
[b(x) + h2(x, t)− z]∂σ

∂x
(x, z)dz, (3.43)

I3,2(x, t) =
∫ b+h2

b

∂σ

∂x
(x, z)dz. (3.44)

The shear stresses consist of τi (Eq. 3.22) and bed shear stress τb , defined as [25]:

τb = −ρ2gn
2
M|u2|u2R

−1/3
h,2

= −ρ2λb|u2|u2,
(3.45)
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3. Governing equations for two-layer flow in salt-wedge estuaries

where λb is the bed friction factor, Rh,2 = A2/P2 is the lower layer hydraulic radius,

and P2 is the lower layer wetted perimeter.

The momentum conservation law for the lower layer (Eq. 3.37) is rewritten in

the form of linear integrals along the channel axis as follows:
∫ xB

xA
ρ2
∂Q2

∂t
(x, t)dx =−

∫ xB

xA
ρ2
∂Q2u2

∂x
(x, t)dx

−
∫ xB

xA
ρ2u2(x, t)we(x, t)σ3(x, t)dx

−
∫ xB

xA
ρ1g

∂(h1A2)
∂x

(x, t)dx−
∫ xB

xA
ρ2g

∂I1,2

∂x
(x, t)dx

+
∫ xB

xA
ρ1gh1(x, t)I3,2(x, t)dx+

∫ xB

xA
ρ2gI2,2(x, t)dx

+
∫ xB

xA
ρ1gh1(x, t)σ3(x, t) ∂

∂x
(b+ h2)dx

+
∫ xB

xA
[τbP2(x, t)− τiσ3(x, t)] dx.

(3.46)

Assuming that the flow variables are sufficiently smooth, density is constant along

the control volume ρj(x, t) = const., and Ω is arbitrary, Eq. (3.46) is divided by

ρ2 and written in differential form as follows:

∂Q2

∂t
(x, t) =− ∂(Q2u2)

∂x
(x, t)− u2(x, t)we(x, t)σ3(x, t)− rg∂(h1A2)

∂x
(x, t)

− g∂I1,2

∂x
(x, t) + rgh1(x, t)I3,2(x, t) + gI2,2(x, t)

+ rgh1(x, t)σ3(x, t) ∂
∂x

(b+ h2) + 1
ρ2
τbP2(x, t)− 1

ρ2
τiσ3(x, t).

(3.47)

Once more, Eq. (3.47) is rewritten as a function of conserved variables Qj and

Aj, j = 1, 2 and their derivatives only. Note that the dependence on x and t is,

again, left out where introduced previously to reduce the excess notation. Also, the

friction and entrainment terms are dropped for now and introduced later when

the final form is obtained.

First, Eq. (3.47) is rewritten as follows:

∂Q2

∂t
+ ∂

∂x

(
Q2

2
A2

+ gI1,2

)
=− rgh1

∂A2

∂x
− rgA2

∂h1

∂x
+ rgh1I3,2 + gI2,2

+ rgh1σ3
∂

∂x
(b+ h2)

(3.48)
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3. Governing equations for two-layer flow in salt-wedge estuaries

Next, using Liebnitz rule for ∂I1,2/∂x gives

∂I1,2

∂x
=
∫ b+h2

b

∂

∂x
[(b+ h2 − z)σ(x, z)] dz

= ∂

∂x
(b+ h2)A2 + I2,2,

(3.49)

and momentum equation (3.48) is simplified to

∂Q2

∂t
+ ∂

∂x

(
Q2

2
A2

)
=− gA2

∂

∂x
(b+ h2)− rgh1

∂A2

∂x
− rgA2

∂h1

∂x

+ rgh1I3,2 + rgh1σ3
∂

∂x
(b+ h2).

(3.50)

Using the definitions for ∂h1/∂x (Eq. 3.33) and ∂h2/∂x (Eq. 3.34), and after
some calculation the momentum equation (3.50) reads

∂Q2

∂t
+ ∂

∂x

(
Q2

2
A2

)
=− gA2

σ3

∂A2

∂x
− rgA2

σ1

∂A1

∂x
+ rgA2

σ3

∂A2

∂x
− rgA2

σ1

∂A2

∂x

+ rgA2

σ1
I3,1 + gA2

σ3
I3,2 −

rgA2

σ3
I3,2 + rgA2

σ1
I3,2,

(3.51)

and, finally, we can write the conservative differential form of the lower layer momentum
equation and introduce back the friction and entrainment terms as follows:

∂Q2

∂t
+ ∂

∂x

(
Q2

2
A2

+ gA2
2

2σ2

)
=− rgA2

σ1

∂A1

∂x
+ gA2

2
2

∂

∂x

( 1
σ2

)
+ rgA2

σ1
I3,1 + gA2

σ2
I3,2

+ 1
ρ2
τbP2(x, t)− 1

ρ2
τiσ3 −

Q2

A2
weσ3,

(3.52)
where σ2 is weighted harmonic mean of σ1 and σ3:

1
σ2

= 1− r
σ3

+ r

σ1
. (3.53)

3.1.3 Vector form of the governing equations

Equations (3.9), (3.12), (3.36) and (3.52) are written in the vector from as a coupled
system of conservation laws with source terms, as follows:

∂w
∂t

+ ∂f(σ,w)
∂x

= B(σ,w)∂w
∂x

+ v(σ,w) + g(σ,w) + s(σ,w), (3.54)

where w is the vector of conserved variables:

w =
{
A1 Q1 A2 Q2

}T
, (3.55)
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3. Governing equations for two-layer flow in salt-wedge estuaries

vector σ contains characteristic channel cross-section widths:

σ =
{
σ1 σ2 σ3

}T
, (3.56)

vector f(σ,w) is the flux:

f(σ,w) =


Q1

Q2
1

A1
+ g

2σ1
A2

1
Q2

Q2
2

A2
+ g

2σ2
A2

2


, (3.57)

and term B(σ,w)∂w
∂x

appears as a result of coupling the two-layer system, where
matrix B(σ,w) is defined as

B(σ,w) =


0 0 0 0
0 0 −gA1

σ1
0

0 0 0 0
−gA2

σ1
0 0 0

 . (3.58)

The additional source terms have been split into three parts; the first vector
v(σ,w) corresponds to derivatives of σ:

v(σ,w) =


0

g
2
∂
∂x

(
1
σ1

)
A2

1
0

g
2
∂
∂x

(
1
σ2

)
A2

2

 , (3.59)

the second vector g(σ,w) corresponds to the channel bed, width, and wetted cross-
section area (i.e., irregular geometry):

g(σ,w) =


0

gA1
σ1

(I3,1 + I3,2)
0

rgA2
σ1
I3,1 + gA2

σ2
I3,2

 , (3.60)

and the third vector s(σ,w) corresponds to the friction and entrainment:

s(σ,w) = sF(σ,w) + sE(σ,w), (3.61)

sF(σ,w) =


0

τw

ρ1
P1 + τi

ρ1
σ3

0
τb

ρ2
P2 − τi

ρ2
σ3

 , (3.62)
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3. Governing equations for two-layer flow in salt-wedge estuaries

sE(σ,w) =


1
r
weσ3

Q1
A1
weσ3
−weσ3
−Q2
A2
weσ3

 . (3.63)

Notice that densities in each layer remain constant in time and space, and are

unaffected by the entrainment (ρj(x, t) = const., j = 1, 2). This assumption is a first

step approximation necessary to model the entrainment effects in salt-wedge estuaries,

i.e., the circulation in the lower layer in arrested salt wedge and the vertical transfer

of momentum for highly dynamic flow conditions. Furthermore, the entrainment is

mostly confined to the interfacial layer; although vertical mixing may increase its

thickness, the density of the upper and lower layer are rarely affected globally [64].

Before proceeding further, notice that a practical difficulty may appear when

solving the integrals appearing in Eq. (3.60). To simplify the computation, the

integrals in Eq. (3.60) are replaced by corresponding derivatives. First, let us recall

the following equalities from Eqs. (3.29) and (3.30):

I3,1 = −∂A1

∂x
+ σ1

∂h1

∂x
+ (σ1 − σ3) ∂

∂x
(b+ h2) , (3.64)

I3,2 = −∂A2

∂x
+ σ3

∂

∂x
(b+ h2) . (3.65)

Using Eqs. (3.64) and (3.65) the source term (Eq. 3.60) now reads

g(σ,w) =


0

gA1
[

1
σ1

∂
∂x

(A1 + A2)− ∂
∂x

(b+ h2 + h1)
]

0
gA2

[
1
σ2

∂A2
∂x

+ r
σ1

∂A1
∂x
− ∂

∂x
(b+ h2 + rh1)

]
 . (3.66)

3.2 Governing equations for arrested salt-wedges

For steady-state conditions, i.e., constant sea levels and river flow, an equilibrium

is established between the buoyancy pressure gradients, friction forces, and inertial

forces [84], and eventually an arrested salt-wedge forms. This section presents the

governing equations for this steady-state type of estuary.
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3. Governing equations for two-layer flow in salt-wedge estuaries

3.2.1 System of ODEs for arrested salt-wedges

To derive governing equations for the arrested salt-wedge, in which only the upper
layer is fully active, we first write Eq. (3.54) in steady-state form as the following
system of ordinary differential equations (ODE):

dQ1

dx = 1
r
weσ3, (3.67)

dQ2

dx = −weσ3, (3.68)

d
dx

(
Q2

1
A1

+ g

2σ1
A2

1

)
=− gA1

σ1

dA2

dx + g

2
d

dx

( 1
σ1

)
A2

1

+ gA1

[
1
σ1

d
dx(A1 + A2)− d

dx(b+ h2 + h1)
]

+ τw
ρ1
P1 + τi

ρ1
σ3 + Q1

A1
weσ3,

(3.69)

d
dx

(
Q2

2
A2

+ g

2σ2
A2

2

)
=− gA2

σ1

dA1

dx + g

2
d

dx

( 1
σ2

)
A2

2

+ gA2

[
1
σ2

dA2

dx + r

σ1

dA1

dx −
d

dx(b+ h2 + rh1)
]

+ τb
ρ2
P2 −

τi
ρ2
σ3 −

Q2

A2
weσ3.

(3.70)

The momentum equations (3.69) and (3.70) are simplified to

d
dx

(
Q2

1
A1

)
= −gA1

d
dx(b+ h2 + h1) + τw

ρ1
P1 + τi

ρ1
σ3 + Q1

A1
weσ3, (3.71)

d
dx

(
Q2

2
A2

)
= −gA2

d
dx(b+ h2 + rh1) + τb

ρ2
P2 −

τi
ρ2
σ3 −

Q2

A2
weσ3. (3.72)

Dividing these equations by gA1 and gA2, respectively, and after some simple
calculation, the momentum equations are written as

d
dx

(
Q2

1
2gA2

1
+ b+ h2 + h1

)
= τw

ρ1gA1
P1 + τi

ρ1gA1
σ3 + Q1

gA2
1
weσ3, (3.73)

d
dx

(
Q2

2
2gA2

2
+ b+ h2 + rh1

)
= τb

ρ2gA2
P2 −

τi
ρ2gA2

σ3 −
Q2

gA2
2
weσ3. (3.74)

The continuity equations (3.67) and (3.68) with the momentum equations (3.73) and
(3.74) can be used to compute the arrested salt-wedge profile in channels with irregular
geometry, including friction and entrainment processes.
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3. Governing equations for two-layer flow in salt-wedge estuaries

3.2.2 Single ODE for arrested salt-wedges

If entrainment is neglected we(x, t) = 0, the flow rate in the lower layer becomes

Q2(x, t) = 0, and the upper layer becomes stationary dQ1/dx = 0; hence, the arrested

salt-wedge is described by momentum equations

d
dx

(
Q2

1
2gA2

1
+ b+ h2 + h1

)
= τw
ρ1gA1

P1 + τi
ρ1gA1

σ3 (3.75)

and
d

dx (b+ h2 + rh1) = − τi
ρ2gA2

σ3. (3.76)

For a prismatic channel with rectangular cross sections, in which σ1,2,3(x) = σ

and Aj(x) = σhj(x), j = 1, 2, a single ODE is obtained. First, since dQ1/dx = 0, Eq.

(3.76) is rewritten so that the only unknowns are h1 and h2; therefore

Q2
1

2gσ2
d

dx

(
1
h2

1
+ b+ h2 + h1

)
= τw
ρ1gA1

2h1 + τi
ρ1gA1

σ

− Q2
1

gσ2h3
1

dh1

dx + db
dx + dh2

dx + dh1

dx = τw
ρ1gA1

2h1 + τi
ρ1gA1

σ. (3.77)

Equation (3.76) is subtracted from Eq. (3.77), which results in

− Q2
1

gσ2h3
1

dh1

dx + dh1

dx − r
dh1

dx = τw
ρ1gA1

2h1 + τi
ρ1gA1

σ + τi
ρ2gA2

σ. (3.78)

Using definitions for shear stress from Eqs. (3.21) and (3.22), a single ODE describes

the slope of the interface from the mouth upstream (u1 < 0, u2 = 0) as follows:
(

1− r − u2
1

gh1

)
dh1

dx = λwu
2
1

gA1
2h1 + λiu

2
1

gA1
σ + r

λiu
2
1

gA2
σ, (3.79)

and finally we have

dh1

dx = Fd2

1− Fd2

[
λi

(
1 + r

h1

h2

)
+ λw

2h1

σ

]
, (3.80)

where Fd = u1/
√
g(1− r)h1 is the densimetric Froude number in channels with

rectangular cross-sections and stagnant lower layer.

35



3. Governing equations for two-layer flow in salt-wedge estuaries

3.2.3 Analytical equation for arrested salt-wedges

Equation (3.80) may be further simplified by neglecting λw and considering a horizontal
channel bed b(x) = const. Under these assumptions the following non-dimensional
parameters are introduced:

ϕ = h1/H0, χ = x/H0, (3.81)

where H0 is a constant total depth in a horizontal channel. Also, the upstream
squared densimetric Froude number is

F 2
0 = Q2

g(1− r)σ2H3
0

= Fd2ϕ3. (3.82)

Substituting the parameters defined by Eqs. (3.81) and (3.82), and using the Boussinesq
approximation, which neglects the density ratio r everywhere expect where multiplied
by g [100], Eq. (3.80) becomes

dϕ
dχ = F 2

0
ϕ3 − F 2

0
λi

(
1

1− ϕ

)
. (3.83)

Equation (3.83) is then integrated over depth, as follows:

χ =
∫ ϕ2

ϕ1

[
F 2

0
ϕ3 − F 2

0
λi

(
1

1− ϕ

)]−1

dϕ. (3.84)

The integration between the boundary conditions ϕ1 = 1 at the tip of the salt-
wedge and a critical condition ϕ2 = F

2/3
0 at the river mouth leads to a well-known

analytical equation (2.7) for the length of the salt-wedge. The shape of the salt-wedge
can, similarly, be computed in a discrete form by solving Eq. (3.84), where ϕ1 = 1
and ϕ2 = ϕ1 − ∆ϕ. Here ∆ϕ is a vertical spatial step; therefore, ϕ2 is the upper
layer thickness at any distance χ from the tip of the salt-wedge.
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Abstract

This chapter presents two numerical schemes for solving arrested and time-dependant
salt-wedge flows. The first scheme is based on a FDM, namely the implicit trapezoidal
method, while the second scheme is based on a FVM, namely the modified Q-scheme
of Roe. Furthermore, stability and well-balanced properties of the FVM scheme are
discussed. A well-balanced treatment of source terms at wet-dry fronts in channels
with irregular geometry is also presented. And finally, physically relevant boundary
conditions for salt-wedge models are proposed.
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4. One-dimensional numerical schemes

4.1 FDM for arrested salt-wedges

The arrested salt-wedge model was developed to compute interface profiles and to

calibrate the interfacial friction factor. The governing equations for steady-state flow

are written as a system of four ODEs (Eq. 3.67, 3.68, 3.73, and 3.74). There are

a number of ways to numerically solve a system of ODEs, the simplest being the

finite difference method, which approximates the derivatives of an unknown function.

Among many forms of FDM, such as the forward Euler, backward Euler, and central

difference, the most commonly used for steady gradually varied shallow water flow

is the implicit trapezoidal method [93].

4.1.1 Implicit trapezoidal method

A first step in applying the implicit trapezoidal method is to divide the spatial

domain by M nodes, with a step ∆x = xi+1 − xi. Spatial steps of equal length are

considered here, although this method is easily applied to irregular meshes. The

proposed method for solving ODE of a general form

dy
dx = f(x, y), (4.1)

is written as follows [93]:

yi+1 = yi + ∆x
2 (f(xi, yi) + f(xi+1, yi+1)) , (4.2)

where yi+1 and yi are the values of the unknown function at nodes i and i + 1,

respectively, and f(xi, yi) and f(xi+1, yi+1) are the values of the derivatives of a

function y(x) at nodes i and i + 1, respectively (see Fig. 4.1).

Application of the implicit trapezoidal method (Eq. 4.2) to solve the system of

equations (3.67), (3.68), (3.73) and (3.74) results in the following equations:

Qi+1,1 = Qi,1 + ∆x
2r (we,i+1σi+1,3 + we,iσi,3) , (4.3)

Qi+1,2 = Qi,2 −
∆x
2 (we,i+1σi+1,3 + we,iσi,3) , (4.4)
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f(x,y)

x
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f(xi+1,yi+1)

f(xi,yi)

xi xi+1Δx

Figure 4.1: Implicit trapezoidal method interpretation.

(
Q2
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2gA2

1
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)
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1
2gA2

1
+ b+ h2 + h1
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∆x
2

(
Qi+1,1

gA2
i+1,1

we,i+1σi+1,3 + Qi,1

gA2
i,1
we,iσi,3

)
,

(4.5)(
Q2

2
2gA2

2
+ b+ h2 + rh1

)
i+1

=
(
Q2

2
2gA2

2
+ b+ h2 + rh1

)
i

−

∆x
2

(
λb,i+1|ui+1,2|ui+1,2

gAi+1,2
Pi+1,2 + λb,i|ui,2|ui,2

gAi,2
Pi,2
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+

∆x
2

(
(λi)i+1|ui+1,1 − ui+1,2| (ui+1,1 − ui+1,2)

gAi+1,2
rσi+1,3

+ (λi)i|ui,1 − ui,2| (ui,1 − ui,2)
gAi,2

rσi,3

)
−

∆x
2

(
Qi+1,2

gA2
i+1,2

we,i+1σi+1,3 + Qi,2

gA2
i,2
we,iσi,3

)
.

(4.6)

The approximate solution is found by solving the system of four algebraic equations
(4.3)-(4.6) for four unknowns Q1, Q2, h1, and h2. The entrainment velocity we

and friction factors λw, λb, and λi are either known input parameters given as
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4. One-dimensional numerical schemes

constant values, or they are computed at each node from additional entrainment
and friction equations. The resulting equations are non-linear; hence, an iterative
Newton-Raphson method [8] was applied.

The main advantages of using the implicit trapezoidal method are that it ensures
a 2nd order of accuracy, it requires only the cross-section geometry data at nodes i and
i+1, and it can be applied for non-prismatic channels with arbitrary cross-sections [93].
Furthermore, it should be noted that the implicit trapezoidal rule applied to a single
shallow water equation is identical to the standard step method [25], which is derived
from the energy equation; it is thoroughly validated and widely used in hydraulic
practice to calculate the steady-state water-depth profiles along natural channels [93].

4.1.2 Boundary conditions for arrested salt-wedges

Flow rates in the upper Q1 and lower Q2 layer, as well as the upper layer thickness h1

and total water depth H = h1 + h2 should be specified at the downstream boundary.
The difference between the upper and lower layer flow rate should be equal to the
river flow rate Q = Q1 − Q2, where Q2 in a steady-state flow can be estimated
from a known entrainment rate E.

In arrested salt-wedge models it is usually assumed that the flow in the upper layer
is internally critical at the mouth, which is defined by Fd2 = 1 [86, 7]. If entrainment
is considered, both layers are active; therefore, a composite Froude number G (Eq. 2.5)
should be used instead. The internally critical condition, defined by G2 = 1, was
solved iteratively for known Q1 and Q2 to obtain the critical upper layer thickness
hc,1. The implicit trapezoidal method, unfortunately, is unsuitable for transcritical
flows, which may occur at the downstream boundary. Therefore, once the internally
critical upper layer thickness hc,1 was computed, the boundary condition was specified
by h1 = 1.05hc,1 to ensure a subcritical flow G2 < 1.

The salt-wedge tip represents an upstream boundary for a two-layer system;
however, the model is able to compute the water surface profile along the entire spatial
domain. This was achieved by defining a tolerance parameter ξ, so that when a lower
layer thickness is h2 < ξ, the computation of a two-layer system is stopped, and a
solver for a single layer SWE [25] continues until the upstream boundary is reached.
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4.1.3 Calibration of the interfacial friction factor λi

Steady-state salt-wedge models were widely used in the past for predicting the arrested
salt-wedge length in the field, and even for simulating quasi-steady salt-wedge dynamics
under gradual changes of the river flow rate (e.g., the Mississippi River [7]). Today, the
arrested salt-wedge models are mostly used for preliminary analyses or calibration of
the interfacial friction factor. Obviously, Eq. (2.7) or (3.80) are much more attractive
than the system of Eqs. (3.67), (3.68), (3.73) and (3.74); λi is directly obtained from
the normalized length of the salt-wedge L/H or the interface slope dh1/dx. Many
interfacial friction studies [94, 29, 89, 76, 56] were based on such, or very similar,
equations. In this thesis a different approach is proposed.

The salt-wedge profile was computed by solving the system of Eqs. (4.3)-(4.6). The
interfacial friction factor was assumed constant along the wedge, and was systematically
varied until the best fit between numerical results and observed interfacial depths was
achieved. In the process of finding the best fit, λi varied over the range 10−5 – 10−2

by the increment of 10−5. The best fit was determined by the visual inspection and
by the smallest root mean square error, defined as

RMSE =
√

1
N

∑
(Xobs −Xmod)2, (4.7)

where N is the total number of observations along the wedge, Xobs is the observed
interface depth, and Xmod is the computed interface depth. This approach allowed for
a more accurate representation of the variable channel geometry, lower layer dynamics,
bed friction, entrainment, and in the end resulted in more accurate results.

4.2 FVM for time-dependant salt-wedges

The time-dependant model was developed to simulate the salt-wedge dynamics under
steady and highly variable flow conditions. The numerical model for salt-wedges
should be stable, fully conservative, and shock-capturing; therefore, a finite volume
method was the most appropriate choice.

Finite volume methods have become popular in recent years, especially in hydrody-
namic modelling for systems of conservation laws. Although similar to finite difference
methods and often interpreted as FDM approximations of differential equations, a FVM
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is derived from the integral form of the conservation law, which shows many advantages
over the differential form [58]. The integral form of conservation laws naturally holds
for many physical laws, such as the conservation of mass, momentum, or energy. A
more detailed description of a FVM and its applications can be found in [58, 97].

4.2.1 FVM for hyperbolic conservation laws

The following one-dimensional first-order hyperbolic PDE is an example of a conserva-
tion law:

∂w(x, t)
∂t

+ ∂f(w)
∂x

= 0, (4.8)

where w(x, t) is the conserved quantity vector and f(w) is the convective flux vector.
When a conservation law has a non-zero right-hand side (RHS) it is called a balance
law or a conservative law with source terms. If the Jacobian of the flux J(w) = ∂f/∂w

has real eigenvalues, then the system is called hyperbolic, and if they are also distinct,
then it is called strictly hyperbolic [58].

The PDE (4.8) is easily derived from the following, more fundamental, integral
form of a conservation law if w(x, t) and f(w) are sufficiently smooth [58]:

d
dt

∫ xB

xA

w(x, t)dx = f(w(xA, t))− f(w(xB, t)), (4.9)

which states that the time-rate change of conserved quantity w between two points
xA and xB can occur only due to fluxes f(w) at endpoints. The main advantage
of the integral equation (4.9) is that it admits discontinuous solutions, in contrast
to partial differential equations [58].

In a 1D finite volume method the spatial domain is divided intoM control volumes
or cells denoted by Ci = [xi−1/2, xi+1/2], for i = 1..M , where xi is the centre of the cell,
and xi+1/2 is the intercell between the cells Ci and Ci+1 (Fig. 4.2). If we assume that
all cells are equal in size, then ∆x = xi+1/2 − xi−1/2 denotes the cell size, although,
a FVM is easily applied for irregular meshes.

In general, index i refers to average values in cell Ci, and index i+ 1/2 refers to
intermediate states at the edges between cells Ci and Ci+1 (Fig. 4.3). Symbol ∆t
denotes the time step, and the upper index n corresponds to values at time tn = n∆t.
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Figure 4.2: Graphical interpretation of a piecewise constant function wn(x).

As illustrated in Fig. 4.2, the value wn
i denotes the average value of w(x, t)

over cell Ci at time tn, as follows:

wn
i = 1

∆x

∫
Ci

w(x, tn)dx = 1
∆x

∫ xi+1/2

xi−1/2

w(x, tn)dx. (4.10)

Therefore, a FVM approximate solution to Eq. (4.8) is a piecewise constant , written as

wn(x) = wn
i for x ∈ Ci. (4.11)

These conserved values are updated at each time step by the fluxes through the edges
of each cell. To develop an explicit numerical scheme, Eq. (4.9) is written for w(x, t)
in each cell and integrated over time from tn to tn+1, as follows:∫

Ci

w(x, tn+1)dx−
∫
Ci

w(x, tn)dx =
∫ tn+1

tn

[
f(w(xi−1/2, t))− f(w(xi+1/2, t))

]
dt.
(4.12)

For a fully discrete form, the time average flux at intercell i + 1/2 between time
tn and tn+1 is denoted by [58]:

fni+1/2 = 1
∆t

∫ tn+1

tn
f(w(xi+1/2, t))dt. (4.13)

Using Eqs. (4.10) and (4.13), and dividing Eq. (4.12) by ∆x, we finally obtain the
following explicit finite volume scheme [58]:

wn+1
i = wn

i −
∆t
∆x

(
fni+1/2 − fni−1/2

)
. (4.14)
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Figure 4.3: Graphical interpretation of a three-point explicit finite volume method.

In hyperbolic PDEs, perturbations (e.g. waves in SWE) propagate with finite
speeds; therefore, it is reasonable to assume that flux fni+1/2 is some function F of
quantities wn

i+1 and wn
i in neighbouring cells [58]:

fni+1/2 = F(wn
i ,wn

i+1), (4.15)

The main problem in FVM is finding F that adequately approximates the actual
physical flux. Regardless of the choice for F , Eq. (4.14) is in general a three-point
explicit method [58], which means that the solution for wn+1

i depends on values
from three neighbouring cells wn

i−1, wn
i , and wn

i+1, obtained from the previous
times step (Fig. 4.3).

Furthermore, Eq. (4.14) is considered a conservative numerical scheme because
the same flux function is used to update the quantities in neighbouring cells wn

i and
wn
i+1. In other words, the same quantity which enters the cell Ci+1 must leave the

cell Ci, so that the total quantity is preserved over the entire domain, up to the
boundaries [97]. However, since Eq. (4.9) is exact, the accuracy of the numerical
scheme depends on the choice of F .

4.2.2 Godunov method and approximate Riemann solvers

A Riemann problem is a hyperbolic conservation law (Eq. 4.8) with the following
initial condition defined by a single discontinuity at x = 0:

w(x, 0) =
wn

i if x < 0
wn
i+1 if x > 0

. (4.16)
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The Godunov method [39] is an upwind finite volume scheme which exactly solves
the Riemann problem at each intercell xi+1/2, to determine F at a given time step
tn. The Godunov intercell flux is therefore a function of the conserved quantity
w evaluated at the intercell xi+1/2 [97]:

F = f
(
w(xi+1/2, tn)

)
= f

(
wn
i+1/2

)
. (4.17)

The solution to the Riemann problem is based on a quasi-linear form of the con-
servation law [97]:

∂w
∂t

+ J(w)
∂w
∂x

= 0, (4.18)

where J(w) = ∂f/∂w is the Jacobian matrix of the flux, which is derived by applying
the chain rule for ∂f(w)/∂x in Eq. (4.8):

∂f(w)
∂x

= ∂f
∂w

∂w
∂x

= J(w)
∂w
∂x

. (4.19)

For linear conservation laws, the Riemann problem is solved exactly at each intercell
based on eigenvalues and eigenvectors of the constant coefficient Jacobian matrix
J(w) = J. For non-linear conservation laws, however, Jacobian matrix J(w) is
a function of w, and obtaining the exact solution to the Riemann problem can
become computationally too expensive. Therefore, approximate Riemann solvers
were eventually introduced [58].

Roe [81] introduced an idea to replace the original Jacobian matrix J(w) by
an approximate Jacobian matrix J̃(wn

i ,wn
i+1). Constant coefficients of the matrix

J̃(wn
i ,wn

i+1) depend only on known values wn
i+1 and wn

i ; therefore, the Riemann
problem becomes a linear hyperbolic system. Since perturbation speeds depend on
eigenvalues ψ of the Jacobian matrix, the numerical flux at the intercell is evaluated
in an upwind manner as [58]:

fni+1/2 = f(wi) + J̃−(wn
i ,wn

i+1)∆w (4.20)

or
fni+1/2 = f(wi+1)− J̃+(wn

i ,wn
i+1)∆w, (4.21)

with
∆w = wn

i+1 −wn
i . (4.22)
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Averaging Eqs. (4.20) and (4.21) gives

fni+1/2 = 1
2 [f(wi) + f(wi+1)]− 1

2 |J̃(wn
i ,wn

i+1)|∆w, (4.23)

which is a general way of writing the numerical flux at the intercell xi+1/2 in the
original Q-scheme [101]. Notice that the numerical flux consists of a centred part
1
2 [f(wi) + f(wi+1)] and additional term defined by the matrix J̃(wn

i ,wn
i+1), which is

used to upwind the flux. The following definitions are also presented for clarity:

J̃(wn
i ,wn

i+1) = KΨK−1 and J̃±(wn
i ,wn

i+1) = KΨ±K−1, (4.24)

where Ψ is a diagonal matrix having as coefficients the eigenvalues of J̃(wn
i ,wn

i+1),
andK denotes a matrix containing eigenvectors, which correspond to those eigenvalues.
Also

Ψ± =


ψ±1 0

. . .
0 ψ±4

 , (4.25)

where
ψ±l = 1

2 (ψl ± |ψl|) , 1 ≤ l ≤ 4, (4.26)

so that

|Ψ| = Ψ+ −Ψ− and |J̃| = J̃+ − J̃−. (4.27)

For a hyperbolic conservation law, the Roe’s Jacobian matrix J̃(wn
i ,wn

i+1) should
satisfy the following properties [97]:

a) Hyperbolicity of the PDE system.
All eigenvalues of matrix J̃(wi,wi+1) should be real.

b) Consistency with the original Jacobian:
J̃(wi,wi+1) −→ J(w) when wi,wi+1 −→ w

c) Conservation across discontinuities:
f(wi+1)− f(wi) = J̃(wi,wi+1)∆w

To satisfy the latter condition, the constant coefficient matrix J̃(wn
i ,wn

i+1) is
approximated at some average state [97]:

J̃(wn
i ,wn

i+1) = J(w̃n
i+1/2) = Jni+1/2, (4.28)

where w̃n
i+1/2 is the Roe’s average of wn

i and wn
i+1 evaluated at intercell xi+1/2, which

depends on the specific problem at hand.
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4.2.3 Modified Q-scheme for two-layer salt-wedge flow

The governing equations for a single layer shallow water flow through a prismatic
channel with rectangular cross-sections, horizontal bed, and no friction are written
as a system of conservation laws, and a standard approximate Riemann solver, such
as the original Q-scheme, can be applied [9]. However, when sloped bed, variable
cross-section, or friction is considered, as in the governing system of equations (3.54),
the corresponding system becomes a conservation law with source terms, and standard
solvers may fail in computing steady-state flow [9].

The problem of source terms corresponding to bed elevations and variable width
was successfully solved for a single layer shallow water flow through non-prismatic
channels with rectangular cross-sections by introducing a modified Q-scheme with
upwind treatment of the source terms [9, 101]. Castro et al. also adapted the Q-scheme
to deal with coupled two-layer systems in channels with rectangular cross-sections
[21] and later in channels with arbitrary cross-sections [18].

The first difficulty in approximating the system of two-layer SWE in channels
with irregular geometry is that the flux f(σ,w) in Eq. (3.54) depends, not only on
w, but also on the channel width σ. The chain rule for the partial derivative
of f(σ,w) therefore states

∂f(σ,w)
∂x

= ∂f
∂w

∂w
∂x

+ ∂f
∂σ

∂σ

∂x
= J(σ,w)∂w

∂x
+ v(σ,w). (4.29)

Another difficulty arises from the fact that the source terms corresponding to deriva-
tives of the conserved quantity B(σ,w)∂w

∂x
in Eq. (3.54) should be considered when

computing eigenvalues. Castro et al. [21] treated this source term locally as a flux
term, so that the governing equation (3.54) with Eq. (4.29), and without source
terms g(σ,w) and s(σ,w), is rewritten as:

∂w
∂t

+ Q(σ,w)∂w
∂x

= 0, (4.30)

where Q(σ,w) = J(σ,w)−B(σ,w), and J(σ,w) is the Jacobian matrix, defined as:

J(σ,w) = ∂f
∂w

=


0 1 0 0

−Q2
1

A2
1

+ g
σ1
A1 2Q1

A1
0 0

0 0 0 1
0 0 −Q2

2
A2

2
+ g

σ2
A2 2Q2

A2
.

 (4.31)

An approximate Riemann solver can therefore be applied to Eq. (3.54).
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Numerical scheme

In the present work, the Q-scheme of Castro et al. [18] for a two-layer flow through
channels with irregular geometry was extended to solve the governing equation (3.54).
The additional terms accounting for friction (Eq. 3.62) and entrainment (Eq. 3.63)
were considered as source terms, and treated in a similar upwind manner as terms
accounting for irregular geometry (Eq. 3.66). The idea to upwind the friction terms
in channels with rectangular cross-sections was proposed in [34]. Likewise, Cea et

al. [23] showed that mass terms, such as lateral inflows should also be upwinded to
reduce discretization errors introduced by upwinding the flux terms, and to ensure
the stability of the numerical scheme.

The proposed numerical model is explicit in time and first order accurate, although,
it is second order accurate for steady-state solutions [9]. Using a combination of
numerical techniques presented in [18, 21, 23, 34, 101], the following numerical scheme
is proposed to solve Eq. (3.54):

wn+1
i =wn

i + ∆t
∆x

(
fi−1/2 − fi+1/2

)
+ ∆t

2∆x
[
Bi−1/2(wn

i −wn
i−1) + Bi+1/2(wn

i+1 −wn
i )
]

+ ∆t
2∆x

(
vi−1/2 + vi+1/2

)
+ ∆t

∆x
(
P+
i−1/2gi−1/2 + P−i+1/2gi+1/2

)
+ ∆t

(
P+
i−1/2si−1/2 + P−i+1/2si+1/2

)
,

(4.32)

with the following numerical fluxes defined as [18]:

fi+1/2 = 1
2
[
f(σn

i ,wn
i ) + f(σn

i+1,wn
i+1)

]
− 1

2 |Qi+1/2|(wn
i+1 −wn

i ), (4.33)

fi−1/2 = 1
2
[
f(σn

i−1,wn
i−1) + f(σn

i ,wn
i )
]
− 1

2 |Qi−1/2|(wn
i −wn

i−1), (4.34)

and projection matrices used to upwind source terms [18]:

P±i+1/2 = 1
2Ki+1/2

(
Id± sgn(Ψi+1/2)

)
K−1
i+1/2, (4.35)

P±i−1/2 = 1
2Ki−1/2

(
Id± sgn(Ψi−1/2)

)
K−1
i−1/2, (4.36)
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where Id is 4 × 4 identity matrix, and

sgn
(
Ψi+1/2

)
=


sgn

(
ψi+1/2,1

)
0

. . .
0 sgn

(
ψi+1/2,4

)
 . (4.37)

Note that the projection matrices are derived from the eigenvalues and eigenvectors of
the matrix Qi+1/2. The eigenvalues ψi+1/2,l, 1 ≤ l ≤ 4, are categorized as two external
and two internal eigenvalues, which relate to wave speeds. The analytical solutions
for eigenvalues are unknown; therefore, the QZ algorithm [67] was used.

If the signs of internal eigenvalues are the same, the flow is internally supercritical,
if one of them is equal to zero, the flow is internally critical, and if the signs differ,
the flow is internally subcritical. Castro et al. [18] deduced from the matrix Q(σ,w)
that internally critical, subcritical, and supercritical flow, corresponding to G2 = 1,
G2 < 1, and G2 > 1, respectively, is defined for irregular cross sections as

G2 = Fd2
1 + Fd2

2 − (1− r)σ2

σ3
Fd2

1Fd
2
2, (4.38)

with
Fd2

1 = Q2
1σ1

g(1− r)A3
1

σ3

σ2
and Fd2

2 = Q2
2σ3

g(1− r)A3
2
, (4.39)

where Fd1 and Fd2 are respective upper and lower layer internal Froude numbers
in channels with irregular cross section geometry [18].

Intermediate states

Once the solutions wn
i are known at each cell i at a given time step tn, the inter-

mediate values are computed at intercells to linearise the system. The Q-scheme
of Roe approximates the intermediate states for SWE in channels with irregular
geometry as follows [18]:

wn
i+1/2 =

{
Ani+1/2,1 Qn

i+1/2,1 Ani+1/2,2 Qn
i+1/2,2

}T
, (4.40)

where
Ani+1/2,j =

Ani,j + Ani+1,j

2 , (4.41)

uni+1/2,j =
uni,j

√
Ani,j + uni+1,j

√
Ani+1,j√

Ani,j +
√
Ani+1,j

, (4.42)
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Qn
i+1/2,j = Ani+1/2,ju

n
i+1/2,j, (4.43)

and also

Qn
i+1/2 = Jni+1/2 −Bn

i+1/2, (4.44)

where matrices Jni+1/2 andBn
i+1/2 correspond to J(σn

i+1/2,wn
i+1/2) andB(σn

i+1/2,wn
i+1/2),

respectively, with

σni+1/2,1 =
σni,1 + σni+1,1

2 , (4.45)

σni+1/2,3 =
σni,3 + σni+1,3

2 , (4.46)

1
σni+1/2,2

= 1− r
σni+1/2,3

+ r

σni+1/2,1
. (4.47)

To satisfy the conservation property (C-property) [9], i.e., to exactly preserve
the steady-state solution for water at rest (Qi,j = 0, ηi = bi + hi,1 + hi,2 = const.),
the following equality must be true [18]:

Qi+1/2 (wi+1 −wi) = f(wi+1)− f(wi)− vi+1/2 −Bi+1 (wi+1 −wi) . (4.48)

Condition (4.48) is satisfied when vni+1/2 is equal to {0 vni+1/2,1 0 vni+1/2,2}T [18], where

vni+1/2,j =g2

 1
σni+1,j

− 1
σni+1/2,j

(Ani+1,j

)2
+

g

2

 1
σni+1/2,j

− 1
σni,j

(Ani,j)2
.

(4.49)

The intermediate states for source terms are computed in a similar manner. The
source term corresponding to irregular geometry is approximated as [18]:

gni+1/2 =


0

gni+1/2,1
0

gni+1/2,2

 , (4.50)

where
gni+1/2,1 = g

Ani+1/2,1

σni+1/2,1

(
Ani+1,1 + Ani+1,2 − Ani,1 − Ani,2

)
− gAni+1/2,1

(
bi+1 + hni+1,2 + hni+1,1 − bi − hni,2 − hni,1

) (4.51)
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and

gni+1/2,2 =
gAni+1/2,2

σni+1/2,2

(
Ani+1,2 − Ani,2

)
+
rgAni+1/2,2

σni+1/2,1

(
Ani+1,1 − Ani,1

)
− gAni+1/2,2

(
bi+1 + hni+1,2 + rhni+1,1 − bi − hni,2 − rhni,1

)
.

(4.52)

An additional effort in this thesis was made to evaluate intermediate states for
friction and entrainment terms. Let us recall that the second source term (3.61)
accounts for friction and entrainment, as follows:

sni+1/2 =


snE,i+1/2,1[1]

snF,i+1/2,1 + snE,i+1/2,1[2]
snE,i+1/2,2[1]

snF,i+1/2,2 + snE,i+1/2,2[2]

 . (4.53)

The intermediate friction source terms are therefore approximated as:

snF,i+1/2,1 =− gAni+1/2,1
n2

Mu
n
i+1/2,1|uni+1/2,1|(
Rn
h,i+1/2,1

)4/3

− λi
(
uni+1/2,1 − uni+1/2,2

)
|uni+1/2,1 − uni+1/2,2|σni+1/2,3

snF,i+1/2,1 =− λw
(
uni+1/2,1

)
|uni+1/2,1|P n

i+1/2,1

− λi
(
uni+1/2,1 − uni+1/2,2

)
|uni+1/2,1 − uni+1/2,2|σni+1/2,3,

(4.54)

and

snF,i+1/2,2 =− gAni+1/2,2
n2

Mu
n
i+1/2,2|uni+1/2,2|(
Rn
h,i+1/2,2

)4/3

− rλi
(
uni+1/2,2 − uni+1/2,1

)
|uni+1/2,2 − uni+1/2,1|σni+1/2,3

snF,i+1/2,2 =− λb
(
uni+1/2,2

)
|uni+1/2,2|P n

i+1/2,2

− rλi
(
uni+1/2,2 − uni+1/2,1

)
|uni+1/2,2 − uni+1/2,1|σni+1/2,3.

(4.55)

Whereas, the entrainment intermediate states are approximated as:

snE,i+1/2,1[1] = 1
r
weσ

n
i+1/2,3, (4.56)

snE,i+1/2,1[2] = weu
n
i+1/2,1σ

n
i+1/2,3, (4.57)

snE,i+1/2,2[1] = −weσni+1/2,3, (4.58)

snE,i+1/2,2[2] = −weuni+1/2,2σ
n
i+1/2,3. (4.59)
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Harten regularization

For either internally or externally critical flow, one of the eigenvalues is equal to zero
and numerical viscosity of the Q-scheme may vanish. To prevent this, Castro et al. [18]
proposed to apply the Harten regularization [44] and redefined Eq. (4.33) as follows:

fi+1/2 = 1
2
[
f(σn

i ,wn
i ) + f(σn

i+1,wn
i+1)

]
− 1

2 |Qi+1/2|ε(wn
i+1 −wn

i ), (4.60)

where
|Qi+1/2|ε = Ki+1/2|Ψi+1/2|εK−1

i+1/2. (4.61)

Each diagonal coefficient of matrix |Ψi+1/2|ε is modified as follows:

|ψi+1/2,l|ε = |ψi+1/2,l|+0.5
[
1 + sgn(ε− |ψi+1/2,l|)

] (ψ2
i+1/2,l + ε2

2ε − |ψi+1/2,l|
)
, (4.62)

where 1 ≤ l ≤ 4 and ε is a correction parameter, usually chosen to be around 0.1 [18].

On hyperbolicity and interfacial instabilities

Sometimes complex eigenvalues may appear in the matrix Q, and then Eq. (3.54)
loses its hyperbolic character. This problem is related to the occurrence of shear
driven instabilities, such as Kelvin-Helmholtz or Holmboe waves [16]. In real flows,
these instabilities usually initiate interfacial mixing, which then dissipates some of
the turbulent energy. Unfortunately, the considered model breaks down if complex
eigenvalues appear, and cannot simulate unstable flows. Adequate friction, however,
can reduce some of the locally confined shear instabilities enough to maintain
the hyperbolic character of the PDE system. The practical problem is that too
much friction may result in excessively diffused results and even produce spurious
oscillations in the flow.

Castro et al. [16] presented a different strategy for maintaining the hyperbolic
character. This numerical technique uses a predictor/corrector algorithm, which
adds an extra friction term only to those individual cells where complex eigenvalues
are detected at each time step [16]. The additional friction should represent the
loss of momentum due to mixing, which is expected in real flows as a result of
interfacial instabilities. However, this method is justified only if instabilities are
confined in space and time.

52



4. One-dimensional numerical schemes

A generalized solution for this problem should include a more physical interpre-
tation of interfacial processes and a numerical model that accounts for both friction
and entrainment terms, which are variable in space and time. In the present study,
adding physically relevant friction and entrainment terms prevented the appearance
of complex eigenvalues and maintained the hyperbolic character in all examined cases.

Stability of the explicit scheme

The explicit schemes are stable only if ∆x and ∆t satisfy the Courant-Friedrichs-Lewy
(CFL) condition [97]. Castro et al. [18] included eigenvalues of the matrix Q in a
CFL-like condition to ensure the scheme’s stability:

max
(
|ψi+1/2,l|

) ∆t
∆x ≤ CFL ≤ 1.0, (4.63)

where 1 ≤ l ≤ 4 and 1 ≤ i ≤ M .

However, friction may sometimes become dominant in shallow water flow, and it
is essential to impose an additional stability condition. Burguete et al. [14] proposed
the following condition for a single layer:

− si
2 ∆x− (Qi)2

Ai
≤ 0, (4.64)

where si is the source term accounting for friction. For arrested salt-wedge and no
entrainment, we = 0, the lower layer is stagnant, Q2 = 0, and only the friction
source term for the upper layer remains, si = sF,i,1; therefore, the condition (4.64)
for a two-layer case is written as follows:[

λw
2
Q2
i,1

A2
i,1
Pi,1 + λi

2
Q2
i,1

A2
i,1
σi,3

]
∆x− (Qi,1)2

Ai,1
≤ 0, (4.65)

which is further simplified to

∆x ≤ 2Rh,i,1

λi
σi,3
Pi,1

+ λw
, 1 ≤ i ≤M. (4.66)

This condition implies that the grid size is limited by the sum of interfacial and
bed/wall friction factor, as well as the upper layer hydraulic radius. It also implies
that denser meshes have fewer problems with instability caused by the friction.
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Conservation property

Bermudez and Vázquez [9] showed that a central discretization of source terms may
results in spurious oscillations, i.e., non-physical waves; therefore, the source terms
should be upwinded. The same authors proposed a well-balanced condition called
conservation property (C-property), which prevents the appearance of non-physical
oscillations. A numerical scheme is said to satisfy the C-property if it exactly preserves
the steady-state solution for water at rest, as illustrated in Fig. 4.4,

Qi,1 = 0, Qi,2 = 0, (4.67)

ηi,1 = bi + hi,2 + hi,1 = const., (4.68)

ηi,2 = bi + hi,2 = const., (4.69)

with 1 ≤ i ≤ M .
Castro et al. [18] demonstrated that a Q-scheme applied to a two-layer flow in chan-

nels with arbitrary cross-sections satisfies the C-property if the following equalities hold:

Qi+1/2 (wi+1 −wi) = f(wi+1)− f(wi)− vi+1/2 −Bi+1 (wi+1 −wi) (4.70)

and

Qi+1/2 (wi+1 −wi) = gi+1/2 + si+1/2. (4.71)

The first condition is true because the numerical treatment of the term vi+1/2

(Eq. 4.49) was derived specifically to satisfy Eq. (4.70) [18].
On the other hand, to prove the second condition (4.71), the non-zero components

of the source terms (Eqs. 4.50 and 4.53) for steady-state flow corresponding to
water at rest are written as follows:

gi+1/2,1 =gAi+1/2,1

σi+1/2,1
(Ai+1,1 + Ai+1,2 − Ai,1 − Ai,2) , (4.72)

gi+1/2,2 =gAi+1/2,2

σi+1/2,2
(Ai+1,2 − Ai,2) + rg

Ai+1/2,2

σi+1/2,1
(Ai+1,1 − Ai,1) , (4.73)

sF,i+1/2,1 = 0, sF,i+1/2,2 = 0, (4.74)

sE,i+1/2,1 = {0 0}T, sE,i+1/2,2 = {0 0}T. (4.75)
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h2
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Figure 4.4: Longitudinal section of the channel corresponding to water at rest.

Similarly, the matrix Qi+1/2 for the same conditions is written as:

Qi+1/2 =


0 1 0 0

g
σi+1/2,1

Ai+1/2,1 0 g
σi+1/2,1

Ai+1/2,1 0
0 0 0 1

rg
σi+1/2,1

Ai+1/2,2 0 g
σi+1/2,2

Ai+1/2,2 0

 . (4.76)

Therefore, with wi = {Ai,1 0 Ai,2 0}T and wi+1 = {Ai+1,1 0 Ai+1,2 0}T it is easy to
verify that Eq. (4.71) is also true, and the numerical scheme satisfies the C-property.

4.2.4 Wet-dry fronts in channels with irregular geometry

Wet-dry fronts appear at the intercell between a dry and a wet cell, i.e. a salt-
wedge front. Various numerical techniques were developed to deal with dry cells
[11, 10, 17, 20, 22]. In this thesis a fixed mesh was considered, and the cells were
allowed to be wetted by either both layers or by the upper layer alone. A tolerance
parameter ε was defined to avoid instabilities and negative depths. When hi,2 < ε,
the cell Ci was considered wetted only by the upper layer, and the lower layer velocity
was set to zero ui,2 = 0; however, the layer thickness hi,2 remains unchanged in order
to preserve the mass conservation property of the scheme. Note that the value of
ε should be chosen as small as possible for more accurate results (in this work the
range of values 0.01 - 0.05 m has proved adequate).

It is said that the treatment of wet-dry fronts is appropriate if the numerical
scheme satisfies the extended C-property [17]. This condition implies that a numerical
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Figure 4.5: Longitudinal section of the channel corresponding to water at rest with wet-dry
transition in the lower layer.

steady-state solution for water at rest including wet-dry fronts has to exactly conserve
the mass and momentum equations without any spurious oscillations. Otherwise, dry
cells may become artificial wetted and non-physical flow may appear. Brufau [11]
presented a numerical scheme for one-layer flow that satisfies the extended C-property,
and Castro et al. [17] derived a modification for two-layer flow through channels with
rectangular cross-sections. This modification for a two-layer case was extended here for
a more general case of a two-layer flow through channels with irregular cross sections.

First, let us show that the extended C-property is not satisfied when a lower
layer wet-dry front appears in channels with irregular cross-sections. Consider a
steady-state flow corresponding to water at rest as illustrated in Fig. 4.5. The lower
layer source term (Eq. 4.52) is written as follows:

gi+1/2,2 =gAi+1/2,2

σi+1/2,2
(Ai+1,2 − Ai,2) + rg

Ai+1/2,2

σi+1/2,1
(Ai+1,1 − Ai,1)−

gAi+1/2,2 (bi+1 + rhi+1,1 − bi − rhi,1 − hi,2) ,
(4.77)

and the matrix Qi+1/2 is equal to Eq. (4.76). Therefore, Eq. (4.71) is not true
Qi+1/2 (wi+1 −wi) 6= gi+1/2 + si+1/2, and spurious oscillations may appear in a
steady-state flow.

However, the source terms can be modified to satisfy the extended C-property
if function b(x) is regular enough. Assuming a piecewise bed elevation function,
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Figure 4.6: Wet-dry fronts: (a) bed elevation redefinition and reflective condition is needed,
(b) and (c) no redefinition needed.

with discontinuities at cell interfaces, the numerical source term for bed elevation
is redefined and appropriate reflection conditions are set (Fig. 4.6). For the wet-
dry transition occurring at the interface xi+1/2, between cells Ci and Ci+1, one part
of the lower layer source term (Eq. 4.52) accounting for bed elevations, ∆b =
bi+1 − bi, is modified as follows:

∆b =


r(bi+1 − bi) + (1− r)hi,2 if hi+1,2 < ε and hi,2 ≤ ∆b
r(bi+1 − bi)− (1− r)hi+1,2 if hi,2 < ε and hi+1,2 ≤ −∆b
bi+1 − bi otherwise

. (4.78)

Under general assumption that the cell Ci is wetted only by the upper layer
(hi,2 < ε), the reflection condition is imposed to ensure that the wet-dry front is not
allowed to advance until hi,2 becomes larger than the bed step ∆b. This condition states

Qi+1/2,2 =


0 if hi+1,2 < ε and hi,2 ≤ ∆b
0 if hi,2 < ε and hi+1,2 ≤ −∆b
Ai+1/2,2ui+1/2,2 otherwise

. (4.79)

Notice that only the intercell flow rate Qi+1/2,2 is set to zero, while the flow rate in
the wetted cell is computed as usual from Eq. (3.54).

We can now easily verify that the non-zero components of the lower layer source
term (Eq. 4.52) redefined by Eq. (4.78) is written as:

gi+1/2,2 =gAi+1/2,2

σi+1/2,2
(Ai+1,2 − Ai,2) + rg

Ai+1/2,2

σi+1/2,1
(Ai+1,1 − Ai,1) . (4.80)
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Therefore, Eq. (4.71) is true and the extended C-property is satisfied when a lower
layer wet-dry front appears. A similar treatment of the upper layer wet-dry front can
be applied, although such redefinition is not needed in salt-wedge models.

The problem of wetting and drying in two-layer flows is still not completely resolved,
especially if high accuracy in computing the propagation speed of wet-dry fronts is
required. Recently, Castro et al. [20] proposed a more physically accurate treatment
for a single layer; a non-linear Riemann problem is solved at all intercells where
a wet-dry front is detected. Unfortunately, this numerical treatment is not easily
extended for a two-layer case [20]. Besides, the largest differences in propagation
velocities of the wet-dry front for a single layer, between the original treatment [17]
and the more advanced treatment that solves non-linear Riemann problem [20] was
under 5% for all experiments presented by Castro et al. [20]. This difference in
accuracy is considered minimal in field applications.

4.2.5 Boundary conditions for time-dependant salt-wedges

The upstream boundary condition in salt-wedge estuaries is usually defined by either
the stage or flow hydrograph, which are both easily implemented [58]. The downstream
boundary condition, however, deserves more discussion.

As mentioned before, in arrested salt-wedge models it is usually assumed that the
flow in the upper layer is critical at the mouth [86, 7]. Similarly, in time-dependant
salt-wedge models both layers are active, and the critical flow should be described by
a composite Froude number G (Eq. 4.38). Therefore, the equality G2 = 1 is solved
iteratively for known values of Q1 and Q2. The flow rates in both layer are set to
a zero-gradient condition, where Qn

M,j = Qn
M−1,j, j = 1, 2.

Sometimes, it is difficult to determine the exact position of the mouth for the
realistic geometry of the salt-wedge estuaries. However, Armi and Farmer [5] showed
that in two-layer flows an internally critical flow (hydraulic control) may also be
located at a point of strong channel contractions, which are more easily identified. In
this thesis a downstream boundary was positioned near the mouth at a point where
bridge abutments formed a strong channel contraction.
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Abstract

This chapter presents several numerical experiments that verify the properties of two
proposed schemes. Numerical solutions are compared against analytical solutions of
arrested salt-wedges, and between two different numerical schemes. Furthermore, well-
balanced property of the FVM model is discussed and verified in practice. Numerical
sensitivity to interfacial friction, bed friction, entrainment, and density ratio is
also investigated.
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5. Numerical model performance assessment

5.1 Code verification

Verification of two-layer numerical models is not an easy task because the exact
solutions for salt-wedge profiles are unknown. The only exception is a simplified case
of an arrested salt-wedge in a prismatic channel with rectangular cross-sections and
a horizontal bed, where the bed friction and entrainment are neglected. Therefore,
both proposed models where first verified for this simplified case, by comparing the
numerical results to analytical solutions. The proposed models were also verified
for salt-wedge flow in non-prismatic channels with variable depth, by comparing the
numerical results from two different models between each other.

5.1.1 Comparison with analytical solutions

For a simplified case of an arrested salt-wedge in a prismatic channel with rectan-
gular cross-sections and a horizontal bed, exact solutions are given by Eq. (2.7).
Unfortunately, in the process of deriving Eq. (2.7), the Boussinesq approximation is
used, which disregards the density ratio r everywhere except where multiplied by g.
Hence, the numerical and exact solution will always slightly disagree. Nevertheless,
solutions by FDM and FVM models were compared to exact solutions (for r close
to 1) to qualitatively assess their performance.

First, the FDM model was used to compute interface profiles of the arrested salt-
wedge for different river flow rates. A 10 km long prismatic channel was considered,
defined by rectangular cross-sections of constant depth b(x) = 0.5 m and width
σ(x) = 20 m, as illustrated in Fig. 5.1. The spatial step was set to ∆x = 10 m,
the interfacial friction factor to λi = 10−3, and the density ratio to r = 0.975. The
downstream boundary condition was forced by a total water depth H = 1.5 m and the
upper layer thickness h1, which was computed from the critical flow condition Fd2 = 1.

The FVM model was also applied for the same flow conditions. A 10 km long
prismatic channel was considered as previously (Fig. 5.1). The spatial step was set
to ∆x = 100 m and the temporal step to ∆t = 5 s, which gives an average CFL
≈ 0.5. The interfacial friction factor was set to λi = 10−3 and the density ratio
to r = 0.975. The upstream boundary condition was forced by a constant river
flow rate Q(xM , t) = Q(xM , 0). The downstream boundary condition was forced by
a constant total water depth H(x0, t) = 1.5 m and upper layer thickness h1(x0, t),
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Figure 5.1: Prismatic channel geometry defined by (a) horizontal bed and (b) rectangular
cross-sections of constant width.

which was computed from the critical flow condition G2(x0, t) = 1. The solution

from the FDM model was used as the initial condition, and the simulation ended

when a steady-state flow was reached.

Figure 5.2 shows computed steady-state solutions by the proposed FDM and FVM

models compared against the exact solution of an arrested salt-wedge for flow rates

1.6, 2.1, and 3.0 m3 s−1. The agreement between both models and the exact solution is

satisfactory in all cases. Slightly shorter salt-wedge length, computed by the analytical

model, is probably the results of the Boussinesq approximation. Solutions obtained

by the FDM and FVM models, on the other hand, look almost the same.

5.1.2 Comparison between FDM and FVM models

The aim of this numerical experiment is to assess the ability of both models to correctly

compute steady-state solutions of an arrested salt-wedge in non-prismatic channels,

defined by rectangular cross-sections with variable depth and width, that also includes

the bed friction. As the exact solution is unknown, the numerical solutions obtained by

two different numerical models (FDM and FVM) were compared between each other.

The geometry of 1000 m long channel was defined by the following bed elevation

function (Fig. 5.3a):

b(x) = 2.3
cosh2 (x/600)

, (5.1)
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Figure 5.2: Numerical solutions for the arrested salt-wedge obtained by a steady FDM
and a time-dependant FVM model, and their agreement with the exact solution for (a)
Q = 1.6 m3 s−1, (b) Q = 2.1 m3 s−1 and (c) Q = 3.0 m3 s−1.
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Figure 5.3: Non-prismatic channel geometry defined by (a) variable bed slope and (b)
rectangular cross-sections of variable width.

and rectangular cross-sections with a contraction located at the middle of the
channel (Fig. 5.3b):

σ(x) = 20 + 10
[
1− exp

(
−9 (x/500− 1)2

)]
. (5.2)

As previously, the FDM model was used to compute the interface profile of an arrested
salt-wedge for different river flow rates. The spatial step was set to ∆x = 10 m,
the interfacial friction factor to λi = 10−3, the bed and wall friction were defined
by Manning’s roughness coefficient nM = 0.025 m−1/3 s, and the density ratio was
r = 0.975. The downstream boundary condition was forced by a total depth H = 3.0
m and the upper layer thickness at the mouth h1, which was computed from the
critical flow condition Fd2 = 1.

The FVM model was also applied for the same flow conditions. The spatial
step was set to ∆x = 10 m and the temporal step to ∆t = 0.5 s, which gives an
average CFL ≈ 0.5. The friction factors and the density ratio were the same as in the
FDM model. The upstream boundary condition defined a constant river flow rate
Q(xM , t) = Q(xM , 0). Whereas, the downstream boundary condition was forced by a
constant total water depth H(x0, t) = 3.0 m and a critical flow at the mouth. The
solution from the FDM model was used as the initial condition, and the simulation
ended when a steady-state flow was reached.

Figure 5.4 shows the steady-state solutions of an arrested salt wedge, in a channel
with variable geometry, computed by both FDM and FVM model for flow rates 4, 9
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(c) Q= 18 m3 s−1
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Figure 5.4: Numerical solutions for the arrested salt-wedge obtained by a steady FDM
and a time-dependant FVM model, for (a) Q = 4 m3 s−1, (b) Q = 9 m3 s−1 and (c) Q = 18
m3 s−1.
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and 18 m3 s−1. As it can be seen, the agreement between two models is satisfactory for
all three cases. The influence of the channel contraction is noticeable in all examples
as a local deformation of the interface profile near x ≈ 500 m (Fig. 5.4).

5.2 Well-balanced property of FVM model

This section examines the time-dependant model based on a FVM and assess whether
the conservation properties (C-property and extended C-property) are satisfied in prac-
tice.

5.2.1 Verification of the C-property

The Q-scheme is well-balanced if it satisfies the C-property, which states that the
numerical scheme should exactly preserve the steady-state solution for water at rest in
channels with irregular geometry, without generating any non-physical oscillations [18].
One of the previous subsections (4.2.3) demonstrated that the proposed Q-scheme
exactly preserves the mass and momentum equations by showing that Eqs. (4.70) and
(4.71) are true for steady-state flow corresponding to water at rest. This subsection
presents a numerical experiment to examine does the proposed numerical scheme
actually preserves the steady-state for water at rest in a practical application.

A 10 m long channel is considered, defined by a series of triangular cross-sections
with randomly generated depths and widths, as illustrated in Fig. 5.5a,b. The
spatial step was set to ∆x = 0.05 m and the temporal step to ∆t = 0.004 s,
which gives an average CFL ≈ 0.9. The boundary conditions were set to a zero-
gradient for flow rates in both layers and the total depth was constant. The initial
condition was a steady-state solution representing water at rest (Qi,1 = Qi,2 = 0,
ηi,1 = bi + hi,1 + hi,2 = const.), where the lower layer is always non-zero hi,2 > 0,
so that no dry cells appear inside the domain. Figure 5.5c,d shows the upper and
lower layer depth, as well as the flow rate in each layer at the initial time. Finally,
Fig. 5.5e,f shows the same parameters 10 seconds after the start of the simulation;
although, the results are the same for every other time step.

These results indicate that the proposed numerical scheme exactly preserves the
steady-state solution for water at rest in channels with irregular geometry. The
free water surface and the interface remained constant during the simulation. Some
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Figure 5.5: C-property verification test for water at rest in an irregular channel: (a) bed
elevation, (b) channel width, (c) and (d) initial conditions (water depth and flow rate), and
(e) and (f) results after t = 10 s (water depths and flow rates).
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non-zero flow rates did appear, however, but they were of the order of the numerical
round-off error (≈ 10−12) and did not grow with time. Furthermore, no spurious
oscillations were generated. It is therefore reasonable to conclude that the C-property
is also satisfied in practical applications.

5.2.2 Verification of the extended C-property

When dry cells appear in either the upper or lower layer, non-physical oscillations may
be generated even though the C-property is satisfied. One of the previous subsections
(4.2.4) demonstrated the importance of modifying the source term at the intercell
between wet and dry cells. This subsection shows two numerical experiments for
steady-state flow corresponding to water at rest in channels with irregular geometry
and wet-dry transitions; the first one, illustrates that the spurious oscillations may
appear in practice if the original approximation of the source terms (Eq. 4.52) is
considered, and the second one, examines whether the steady-state flow is actually
preserved when the source terms at the salt-wedge front are modified by Eq. (4.78).

Again, a 10 m long channel is considered, defined by a series of triangular cross-
sections with randomly generated depths and widths, as illustrated in Fig. 5.5a,b.
The spatial step was set to ∆x = 0.05 m and the temporal step to ∆t = 0.004 s, which
gives an average CFL ≈ 0.9. The boundary conditions were set to zero-gradient for
flow rate in both layers and the total depth was considered to be constant. The initial
condition was a steady-state solution representing water at rest (Qi,1 = Qi,2 = 0,
ηi,1 = bi+hi,1+hi,2 = const.), but in contrast to the previous experiment, the lower layer
dries out at several cells, so that wet-dry transitions appear in the channel (Fig. 5.6a,b).

Figure 5.6a,b shows the upper and lower layer depth, as well as the flow rate in
each layer at the initial time. Figure 5.6c,d shows the same parameters 1 second after
the start of simulation when the original source term approximation is applied (after 1
second the numerical scheme becomes unstable and the computation stops). Finally,
Figure 5.6e,f shows the same parameters 10 seconds after the start of simulation
with the modified source terms, as described in section (4.2.4). Again, the results
are the same for all other time steps.

These results indicate that the proposed numerical scheme with adequate treatment
of wet-dry fronts exactly preserves the steady-state solution for water at rest in channels
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Figure 5.6: Extended C-property verification test for water at rest in an irregular channel
with lower layer wet-dry transitions: (a) and (b) initial conditions (water depths and flow
rates), (c) and (d) results at t = 1 s when the original source terms are considered and
spurious oscillations appear, and (e) and (f) results at t = 10 s when the source term
approximation is applied.
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with irregular geometry and lower layer wet-dry fronts. If the original treatment of
the source terms is applied, non-physical oscillations may appear, which destabilizes
the numerical scheme. On the other hand, if wet-dry fronts are adequately treated
and the source term is modified, as described in section (4.2.4), the free water surface
and the interface remain constant in time. The extended C-property is therefore
also satisfied in practical application.

5.3 Numerical model sensitivity

This section investigates the model sensitivity to the main input parameters, in
particular, the influence of the interfacial friction, bed friction, entrainment, and
density ratio. To do so, a 10 km long prismatic channel was considered, defined by
a rectangular cross-section of constant depth and width, as illustrated previously
in Fig. 5.1. The FDM model results are presented here, although, the same results
were obtained by the FVM model. The spatial step was set to ∆x = 10 m. The
downstream boundary condition was forced by the total water depth H = 1.5 m and
the upper layer thickness h1 at the mouth, which corresponded to the critical flow
condition Fd2 = 1 (or G2 = 1 when entrainment was considered).

5.3.1 Influence of interfacial friction

Interfacial friction factor is one of the most important parameters in salt-wedge models
[2]. Let us recall that the solution for the salt-wedge length in simplified prismatic
channels, defined by a horizontal bed and cross-sections of constant width, is given by
Eq. (2.7). Clearly, L is inversely proportional to the interfacial friction factor λi. In
other words, for the same H and Q, L increases at a same rate as λi is reduced.

To illustrate this dependence and high sensitivity of numerical models to λi, Fig. 5.7
presents five numerical examples for constant river flow rate Q = 2.0 m3 s−1, where λi
varied from 1× 10−3 to 2.1× 10−3 by a ∼ 20% increase. Figure 5.7 shows that as λi
increases the salt-wedge length is reduced by approximately the same amount, so that
L for λi = 2.1× 10−3 is 2.1 times shorter than L for λi = 1.0× 10−3. Considering that
λi may vary in the same estuary as much as an order of magnitude, it is clear that
solutions for the arrested salt-wedge are highly sensitive to the interfacial friction factor.
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Figure 5.7: Sensitivity of the numerical model on the interfacial friction factor λi, for
Q = 2.0 m3 s−1 and r = 0.975, without bed friction or entrainment.

5.3.2 Influence of bed friction

Simple arrested salt-wedge models often neglect bed friction; the influence of the bed
friction in the upper layer in wide channels is often an order of magnitude smaller
than the interfacial friction. Furthermore, the bed friction in the stagnant lower layer
is always zero under the assumption of no mixing between the layers. However, bed
friction may influence the movement of the salt-wedge under variable river or tidal flow.

Figure 5.8 presents five numerical examples to assess the influence of the bed friction
on the arrested salt-wedge length. The river flow rate was constant Q = 2.0 m3 s−1,
the interfacial friction factor was λi = 10−3, and the Manning’s roughness coefficient
varied from 0.02 to 0.08 by an increment of 0.02. Figure 5.8 shows that as nM increases
the salt-wedge length is reduced, so that L for nM = 0.08 is about 40% shorter than L
for nM = 0.02. However, examined values for nM span almost the entire range of values
that can be expected in estuaries − from concrete finishing, the excavated channels
covered in gravel and rocks, to unmaintained natural channels covered completely
in weed and dense brushes [95]. The bed friction is clearly less important than the
interfacial friction, but it should be considered in estuarine models. Furthermore, in
time-dependant flow the influence of nM may become even more pronounced.

5.3.3 Influence of entrainment

Salt-wedge models also often neglect entrainment, because in highly stratified con-
ditions the vertical mixing is week and usually confined to the interfacial layer.
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Figure 5.8: Sensitivity of the numerical model on the Manning’s roughness coefficient nM,
for Q = 2.0 m3 s−1, λi = 10−3 and r = 0.975, without entrainment.
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Figure 5.9: Sensitivity of the numerical model on the entrainment velocity we (m s−1),
for Q = 2.0 m3 s−1, λi = 10−3 and r = 0.975, without bed friction.
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Figure 5.10: The resulting upper and lower layer flow rates for different entrainment
velocities we (m s−1), for Q = 2.0 m3 s−1, λi = 10−3 and r = 0.975, without bed friction.
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Figure 5.11: Sensitivity of the numerical model on the density ratio r, for Q = 2.0 m3 s−1,
λi = 10−3, without bed friction or entrainment.

Arita and Jirka [2] showed that entrainment, although weaker in salt-wedges than in
partially-mixed estuaries, may somewhat influence the lower layer circulation.

Figure 5.9 presents five numerical examples to assess the influence of the entrain-
ment on the arrested salt-wedge length. The river flow rate was constant Q = 2.0
m3 s−1, the interfacial friction factor was λi = 10−3, and the entrainment velocity
increased exponentially from 2×10−6 to 16×10−6 m s−1. It seems that the increase in
we results in shorter salt-wedge lengths. However, the entrainment mostly influences
the continuity equations by initiating a vertical mass transport from the lower to
the upper layer. As a results, a recirculation is established, in which the flow rate in
the lower layer is negative and reduces gradually to zero at the tip of the salt-wedge.
Flow in the upper layer, on the other hand, is positive and increases towards the
mouth. Figure 5.10 illustrates the variations in the upper and lower layer flow rates,
as a results of entrainment. It seems that the change in the flow rate is the primary
cause of different salt-wedge lengths shown in Fig. 5.9; therefore, the entrainment
appears to only impose an indirect influence on the salt-wedge length, albeit, a
noticeable one. Furthermore, the longer the salt-wedge is, the more pronounced
influence of the entrainment should be.

5.3.4 Influence of density ratio

Finally, the influence of the density ratio is investigated. As defined before, r is
the ratio of upper to lower layer density. The upper freshwater layer density is
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fairly constant in the field and ranges from 998 to 1000 kg m−3, depending on the
temperature. Whereas, the lower salt-water layer additionally depends on the salinity
and may span over a wider range of values, usually from 1015 to 1030 kg m−3.

Figure 5.11 presents five numerical examples to asses the influence of r on the
salt-wedge length. The river flow rate was constant Q = 2.0 m3 s−1, and the
interfacial friction factor was λi = 10−3. The density ratio r varied from 0.973
to 0.985 by an increment of 0.003, corresponding to respective density differences
∆ρ = ρ2 − ρ1 = 28, 24, 21, 18, and 15 kg m−3. It seems that r also plays an
important role in salt-wedge models; an increase in the salt-water density results
in a noticeably stronger salt-wedge intrusion.

73



6
Field study in the Rječina River estuary

Contents
6.1 Rječina River . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Adriatic Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Field observations in the Rječina River estuary . . . . . 78

6.3.1 Salinity, temperature and density . . . . . . . . . . . . . . . 79
6.3.2 Flow rates and velocities . . . . . . . . . . . . . . . . . . . . 84

6.4 Knudsen’s hydrographic theory . . . . . . . . . . . . . . . 86
6.5 Channel bathymetry . . . . . . . . . . . . . . . . . . . . . 87

6.5.1 Digital terrain model . . . . . . . . . . . . . . . . . . . . . . 89
6.5.2 Cross-section geometry parameters . . . . . . . . . . . . . . 91

Abstract

This chapter presents physical characteristics of the Rječina River and the Adriatic
Sea. Furthermore, approaches and methods used in field observations of the Rječina
River estuary are described. Also, the Knudsens’s box model for estimating the
entrainment velocities is presented. Finally, the chapter documents the generation of
the digital terrain model and the derivation of the cross-section geometry.
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6.1 Rječina River

The Rječina River is 18.6 km long karst river located in the northern coastal part of
Croatia, and it originates from a strong karst spring Rječina situated 325 m above
sea-level (ASL) [82]. In its lower reaches, the river flows through a narrow canyon, and
then continues through an alluvial plain in the city centre of Rijeka, where it finally
enters the Adriatic Sea [102]. Water drawn from the Rječina River is mainly used for
Rijeka’s water supply system (WSS) and electricity production at the Hydropower
Plant Rijeka (Rijeka HPP) [52]. The main intake is located at Rječina spring, from
which 0.69 m3 s−1 is used on average for WSS, except in the summer months, when
the spring usually dries out [82]. During these dry months, from June to August, the
water is drawn from the second intake located at Zvir spring (at ∼2.5 m ASL), next
to the Rječina River channel at a distance of 1.4 km from the river mouth (Fig. 6.1).
The mean annual intake from Zvir spring is 0.21 m3 s−1 [82].

The water regime in the Rječina River significantly changed after the construction
of the Valići dam and reservoir in the middle reaches of the river [52]. Water drawn
from the reservoir is used for the electricity production at the Rijeka HPP, located
in the city centre, near Zvir spring. The maximum operating capacity of the Rijeka
HPP is 21 m3 s−1, and the overflowed water is discharged back into the Rječina
River at 1.3 km from the mouth (Fig. 6.1).

Observations at the most downstream gauging station Tvornica have, unfortunately,
not been conducted continuously, mostly because of poor maintenance and frequent
malfunctions. Tvornica gauging station is located downstream from the Rijeka HPP
outflow at 1.2 km from the mouth (Fig. 6.1). Considering the significance of the
lower reaches of the Rječina River, located in the city centre, the observations were
resumed in 1998, which allowed for a more recent hydrological analysis over a 16-year
period (1999-2015). For the period from 2003 to 2009, only the water stage was
observed; therefore, the flow rates were computed from the available water stage
data and the official rating curve.

The mean annual flow rate for the analysed period 1999-2015 at Tvornica gauging
station was 11.1 m3 s−1, which is slightly lower than 12.9 m3 s−1 observed in the
previous hydrological period (1961-1990) [82]. This difference may be explained by a
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Figure 6.1: Map of the Rječina River estuary with sampling points and inflow locations
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Figure 6.2: Inter-annual variations of the minimum, mean and maximum monthly flow
rates at Tvornica gauging station (1999-2015)
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relatively short series of years covered by the more recent analysis, which includes
three extremely dry years (2003, 2007 and 2012).

Figure 6.2 shows the variations in the minimum, mean and maximum monthly flow
rate throughout the year. The base flow at this gauging station consists of overflowed
water from Rječina spring and Zvir spring, in about equal parts when the mean annual
flow is considered [82]. However, during the summer months, when Rječina Spring
usually dries out, only Zvir spring provides the base flow, with overflows ranging
from a daily minimum Q < 0.1 m3 s−1, observed in August 2003, to an average 1 - 2
m3 s−1. Whereas, during the wet period (November to February), overflowed water
from Zvir spring amounts up to 20 m3 s−1, contributing in part to the total water
flow rate at Tvornica gauging station, where a maximum daily flow rate of 184 m3 s−1

was observed in February of 2014. Inter-daily oscillations also occur in the lower
reaches, depending on outflows from the Rijeka HPP.

6.2 Adriatic Sea

The Adriatic Sea is a semi-enclosed body of water connected to the Mediterranean Sea
through the Strait of Otranto. Climatologically, the Adriatic is usually divided into
three regions: the northern, middle and southern Adriatic. The northern part of the
Adriatic is the shallowest of the three and most sensitive to seasonal variations [27].

The water column in the northern Adriatic consists of a seasonal surface water
layer, characterized by low salinity and high temperatures in the summer, and deep
water layer, characterized by high salinity and low temperatures [27]. A pycnocline,
separating these two layers, is present at the depth of 30 m during the spring and
summer [6]. In autumn, the upper layer begins to cool, whereas, in the winter season
the temperature stability is renewed, and the whole column cools down [6].

The northern Adriatic shows slightly lower salinities than the southern part. The
average salinity of the Adriatic Sea, however, is relatively high compared to other
seas [6]. The salinity also exhibits seasonal character; in the spring the freshwater
inflow increases, and the water column shows lower salinities at the surface and a well-
developed vertical stratification [27]. The deep water layer in the northern Adriatic
shows average values of temperature T = 11.4 ± 1.4 ◦C, salinity S = 38.3 ± 0.3,
and density ρ = 1029.2 kg m−3 [6].
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Figure 6.3: Daily minimum and maximum sea-level amplitudes at Bakar tidal gauging
station in 2015 (according to [45]).

The tides in the Adriatic Sea are of a mixed type with relatively low amplitudes
[80]. The maximum astronomical tidal amplitude recorded between 1953 and 2006,
at the Bakar tidal gauging station, which is located only 12 km from the Rijeka city
centre, was 123 cm; however, mean tidal amplitudes do not exceed 30 cm [80]. Figure
6.3 shows daily tidal amplitudes at Bakar tidal gauging station in 2015 [45].

6.3 Field observations in the Rječina River estu-
ary

The Rječina River estuary is located in the city centre of Rijeka, at 45◦20′ N and
14◦27′ E (Fig. 6.4). This estuary is a typical example of a microtidal salt-wedge where
a variable river flow rate, rather than tides, is the main source of its time dependence.
Krvavica et al. [54] observed highly stratified conditions in the Rječina River estuary
even for low river flow rates. They also computed that the salt-wedge is expelled from
the estuary when Q & 38 m3 s−1. Furthermore, an arrested salt-wedge frequently
forms in the estuary because of a specific combination of low tidal amplitudes, partially
controlled freshwater flow rate, and its relatively short length [54].

Field observations in the Rječina River estuary were carried out during the period
from February to September 2014 and from April to August 2015. The main aim was
to measure the salinity structure along the salt-wedge during different river flow rates
and sea levels. Eleven sampling points were selected along the estuary (Fig. 6.4), with
most of them located at bridges traversing it. Thirty sampling campaigns covered
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Figure 6.4: Digital orthophoto of the Rječina River estuary with sampling points.

various flow conditions, with sea-levels ranging from −0.5 to +0.75 m ASL and river
flow rates ranging from 1.3 to 31.3 m3 s−1. For this range of flow rates the salt-wedge
was always present in the estuary (Q < 38 m3 s−1). The changes in the tidal-driven
sea-levels during the measurements were always under 3–4 cm. Only the observations
made under steady-state conditions were considered, however. Steady states were
identified by Q being constant for several hours before and after the measurements,
and by a minimal influence of wind or waves. A total of 22 out of 30 data sets
remained for further analysis of the arrested salt-wedge after the selection.

An additional sampling campaign, conducted on 1 July 2015, provided more insight
in the salt-wedge response to changes of the river flow rate, which were caused by
variable discharges from the Rijeka HPP. This observation differed from previous
ones for several reasons: (a) the propagation of the salt-wedge was observed (i.e.,
time-dependent changes in the salt-wedge shape), in contrast to the stationary arrested
salt-wedge shape, (b) the vertical salinity profiles were measured continuously along
the estuary every 5 – 15 minutes during a period of 12 hours, in contrast to a single
set of measurements along the estuary for the arrested salt-wedge, and (c) vertical
velocity profiles were measured near the mouth.

6.3.1 Salinity, temperature and density

Vertical profiles of conductivity C and temperature T were measured by a Schlumberger
CTD diver (Conductivity-Temperature-Depth). This device records continuously
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measured conductivity, temperature, and pressure data. By lowering the diver into
the water at a pace of ∼ 5 cm s−1, a detailed vertical C − T profile was measured.

Salinity dependence on conductivity, temperature and pressure

The practical salinity S was calculated from the observed water conductivity C,
temperature T and pressure p using empirical equations given in [33], as follows:

S = a0 + a1R
1/2
t + a2Rt + a3R

3/2
t + a4R

2
t + a5R

5/2
t + ∆S, (6.1)

where

∆S = T − 15
1 + k(T − 15)

(
b0 + b1R

1/2
t + b2Rt + b3R

3/2
t + b4R

2
t + b5R

5/2
t

)
, (6.2)

and
R = RtrtRp = C(S, T, p)

C(35, 15, 0) , (6.3)

with
rt = c0 + c1T + c2T

2 + c3T
3 + c4T

4, (6.4)

and
Rp = 1 + e1p+ e2p

2 + e3p
3

1 + d1T + d2T 2 + (d3 + d4T )R, (6.5)

where T is temperature in degrees Celsius, p is pressure in decibars, coefficients ai,
bi, ci are given in Table 6.1, coefficient di, ei and k are given in Table 6.2, C(S, T, p)
is water conductivity at a given salinity S, temperature T and pressure p, and
C(35, 15, 0) = 42.914 mS cm−1 is conductivity of standard seawater of practical
salinity 35, temperature 15 ◦C at atmospheric pressure. Equation (6.1) is considered
valid for −2 < T < 35 ◦C and 2 < S < 42 [33]. Figure 6.5 shows the salinity
dependence on conductivity and temperature at 1 m depth.

Density dependence on salinity and temperature

Water density ρ was calculated from the observed practical salinity S and temperature
T at atmospheric pressure using empirical equations given in [66], as follows:

ρ(S, T ) = ρw + AS +BS3/2 + CS, (6.6)

with
A = a0 + a1T + a2T

2 + a3T
3 + a4T

4, (6.7)
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Table 6.1: Empirical coefficients ai, bi, and ci for computing salinity from measured
conductivity, temperature and pressure [33]

coeff. value coeff. value coeff. value
a0 0.008 b0 0.0005 c0 0.67661
a1 -0.1692 b1 -0.0056 c1 0.020066
a2 25.3851 b2 -0.0066 c2 1.10426×10−4

a3 14.0941 b3 -0.0375 c3 -6.9698×10−7

a4 -7.026 b4 0.0636 c4 1.0031×10−9

a5 2.7081 b5 -0.0144

Table 6.2: Empirical coefficients di, ei, and k for computing salinity from measured
conductivity, temperature and pressure [33]

coeff. value coeff. value coeff. value
d0 0.03426 e0 2.07×10−5 k 1.62×10−2

d1 04.464×10−4 e1 -6.37×10−10

d2 0.4215 e2 3.989×10−15

d3 -0.00311

and
B = b0 + b1T + b2T

2, (6.8)

where S is practical salinity, T is temperature in degrees Celsius, coefficient ai
and bi are given in Table 6.3, C = 4.8314 × 10−3, and ρw is pure water density
in kg m−3 computed from

ρw(T ) = 999.8426 + d0T + d1T
2 + d2T

3 + d3T
4 + d4T

5, (6.9)

where coefficients di are also given in Table 6.3. Equation (6.6) is considered valid for
−2 < T < 40 ◦C and 0 < S < 42 [66]. Figure 6.6 illustrates the dependence
of ρ on S and T .

Table 6.3: Empirical coefficients ai, bi, and di for computing density of salt-water from
measured salinity and temperature at atmospheric pressure [66]

coeff. value coeff. value coeff. value
a0 8.24493×10−1 b0 -5.72466×10−3 d0 6.79395×10−2

a1 -4.08990×10−3 b1 1.02270×10−4 d1 -9.09530×10−3

a2 7.64380×10−5 b2 -1.65460×10−6 d2 1.00168×10−4

a3 -8.24670×10−7 d3 -1.12008×10−6

a4 5.38750×10−9 d4 6.53634×10−9
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Figure 6.5: Practical salinity S dependence on conductivity C (mS cm−1) and temperature
T (◦C) at 1 m depth, computed from [33].
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Kinematic viscosity dependence on density and temperature

Kinematic viscosity ν of pure water was computed as a ratio of dynamic viscosity
µ and water density ρ, as follows:

ν = µ

ρ
. (6.10)

The dynamic viscosity µ was calculated from the observed temperature T at atmo-
spheric pressure using empirical equations given in [47], as follows:

µ(T ) =
4∑
i=1

aiT̃
bi , (6.11)

where T̃ = T/300 K, T is temperature in Kelvin, and coefficient ai and bi are given
in Table 6.4. Equation (6.11) is recommended for temperature range 253.15 < T <

383.15 K (−20 < T < 110 ◦C) [47].

Table 6.4: Empirical coefficients ai and bi for computing dynamic viscosity µ from measured
temperature at atmospheric pressure [47]

coeff. value coeff. value
a1 280.68 b1 -1.9
a2 511.45 b2 -7.7
a3 61.131 b3 -19.6
a4 0.459 b4 -40

Salinity profiles

During the preliminary analyses, observations were made at several points along
each channel cross-section; however, the measurements revealed minimal variations
in the salinity structure over a cross-section width [55]. Therefore, a single vertical
profile, measured at the centre of each cross-section, was considered to be adequate
for the purpose of this thesis.

Figure 6.7 shows a characteristic observed salinity profile and the method for
estimating interfacial layer thickness δi, and average salinities in the upper S1 and lower
S2 layer. First, an average salinity gradient inside the interfacial layer was computed as

∆S
δi

= S25% − S75%

zS25% − zS75%
, (6.12)
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Figure 6.7: Salinity profiles for flow rate Q = 17.2 m3 s−1: (a) observed salinity S
profile, (b) linearized salinity profile, (c) interface thickness and depth, and (d) approximated
constant salinity S in the upper and lower layer.

where S25% = 0.25Smax, S75% = 0.75Smax, Smax = max(S), zS25% and zS25% are the
corresponding vertical coordinates. Next, the average salinities in the upper layer
S1 = mean(S < 0.05Smax) and in the lower layer S2 = mean(S > 0.95Smax) were
computed, with salinity difference being ∆S = S2 − S1 (Fig. 6.7b). Points where
these three lines intersect were considered to be the upper and lower boundaries of
the interfacial layer, which define δi (Fig. 6.7c). The vertical distance between the
water surface and the midpoint of the interfacial layer defined the interface depth.
For most cases, the interface depth located in the middle of the interfacial layer was
close to the midpoint in salinity and to the maximum salinity gradient. Finally, the
upper and lower layer thickness was computed (Fig. 6.7d). Therefore, in a two-layer
approximation, the interface depth is equal to the upper layer thickness h1.

A squared buoyancy frequency (Eq. 2.15) was additionally computed at each
sampling point, and the maximum value of N2 at each transect was used as a
measure of the stratification strength.

6.3.2 Flow rates and velocities

River flow rate was estimated from the observed water stage at Tvornica gauging
station and a rating curve derived from field measurements during 2013-15 (Fig. 6.8).
Using a rating curve for steady or quasi-steady river flow is justified; however, caution
is advised in unsteady flow, when a rating curve hysteresis should be considered [98].
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Figure 6.8: Rating curve at Tvornica gauging station obtained from field measurements
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(a) (b)

Figure 6.9: ADCP instrument used to measure flow rates and velocities in Rječina River
estuary: (a) Teledyn StreamPro and (b) Nortek Aquadopp.
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The computed river flow rate was validated on several occasion by the Teledyne
StreamPro acoustic Doppler current profiler (ADCP), positioned upstream from the
salt-wedge (Fig. 6.9a). StreamPro works at a frequency of 2.0 MHz, it has 4 beams
at an angle ±20◦. The cell size ranges from 2 to 10 cm, its resolution is 1 mm s−1,
and accuracy is ±1%. The instrument was pulled across the river from a bridge to
obtained a cross-section area and a series of vertical velocity profiles. The flow rate was
computed using the Teledyn software WinRiver II [96]. The differences between the
ADCP measurements and flow rates computed from the rating curve were under 15%.

For a time-dependant salt-wedge case, observed on 1 July 2015, an additional
Aquadopp ADCP (Fig. 6.9b) was positioned near the river mouth to measure the
velocity profiles. Aquadopp also works at a frequency of 2.0 MHz, it has 3 beams,
but a finer cell size which ranges from 0.7 to 1.5 cm, and similar accuracy of ±1%.
This current meter was position at the bottom of the channel facing upward, and
was continuously recording the velocity profile during the sampling.

6.4 Knudsen’s hydrographic theory

A simple two-layer box model was applied to compute entrainment velocities from
the observed values. This model is based on Knudsen’s hydrographical theorem for
conservation of volume and salt, which is appropriate for strongly stratified estuaries,
steady flow conditions, and negligible tidal effects [30]. Given the fact that the
Rječina River estuary is relatively short and the channel geometry is fairly uniform,
the along-wedge average values were computed. The entire length of the salt-wedge
was considered a single box, where the upstream boundary (A) represents the tip
of the salt-wedge, and the downstream boundary (B) represents the salt-wedge
exit region (Fig. 6.10). Continuity equations for water and salt in the upper and
lower layer are written as follows:

Q
(A)
1 +Q21 = Q12 +Q

(B)
1 (6.13)

Q
(A)
2 +Q21 = Q12 +Q

(B)
2 (6.14)

Q
(A)
1 S

(A)
1 +Q21S2 = Q12S1 +Q

(B)
1 S

(B)
1 (6.15)

Q
(A)
2 S

(A)
2 +Q21S2 = Q12S1 +Q

(B)
2 S

(B)
2 (6.16)
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Figure 6.10: Scheme of a two-layer box model for estimating the vertical mixing in
salt-wedge estuaries.

where Qj is the horizontal flow rate; Qjj is the average vertical flow rate inside the
box; Sj is the salinity in the j-th layer; Sj is the average salinity inside the box; and
j = 1, 2 denotes the upper and lower layer, respectively.

For the upstream boundary conditions, the following values were used: upper
layer flow rate Q(A)

1 equals the observed river flow rate; lower layer flow rate Q(A)
2 is

zero; salinity in the upper layer S(A)
1 is also zero; and S(A)

2 is equal to the observed
value at the most upstream profile. At the downstream boundary, the observed values
were used for the upper S(B)

1 and lower S(B)
2 layer salinities. Finally, the horizontal

flow rates Q(B)
1 and Q(B)

2 , as well as downward Q12 and upward Q21 flow rates, were
calculated at each layer by solving the set of equations (6.13) - (6.16).

The vertical volume fluxes w12 and w21 were estimated by dividing the respective
downward and upward flow rates Q12 and Q21 by the interfacial surface area Aint;
therefore, w12 = Q12/Aint and w21 = Q21/Aint. Finally, the entrainment velocity
we = w21 − w12 was obtained from the difference between the upward w21 and
downward w12 volume flux.

6.5 Channel bathymetry

The channel bathymetry was derived from a geodetic survey of cross section depths
along the lower reaches of the Rječina River in 2015 using a combination of CTD
and a GPS device (Fig. 6.11).
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Figure 6.11: Depth measurements in the lower reaches of Rječina River.
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The survey revealed that the Rječina River estuary is characterized by a relatively
short length and a steep bed slope; the maximum observed salt intrusion length
during 2014–15 was just under 800 m, the maximum depth near the mouth is 4.2
m, and the average bed slope is ∼ 0.4% (Fig. 6.12). In the upper reaches of the
estuary, the channel cross sections are narrower with high vertical walls (Fig. 6.13c),
while the cross-sections are wider with mildly sloped sides and a natural bed in the
middle and lower parts of the estuary (Fig. 6.13a,b).

6.5.1 Digital terrain model

All numerical models for open channel flow need some form of a digital terrain
model (DTM) as input data, usually polyline cross-sections or a 3D mesh [83]. In
general, survey data consist of cross-section profiles at several characteristic positions
along the channel. If a prismatic channel is considered, then only a single cross-
section geometry is needed. Even for non-prismatic channels, with rectangular or
some other regular cross-sections, only a few characteristic cross-section geometries
are sufficient. If irregular and non-prismatic channel is considered, however, some
interpolation method is required to approximate the geometric parameters at each
node or cell of the computational domain.

There are several interpolation methods for cross-sections along the river channel
[12, 65, 83, 99]. The present analysis used a combination of cubic splines and a Bézier
curve, similarly as proposed by Travaš et al. [99]. To illustrate the method used for
the Rječina River estuary, Fig. 6.14 shows an example for a 110 m long segment of the
estuary (from 0+440 m to 0+550 m). This is the most complex segment of the estuary,
which includes the transition from a narrow cross-section with vertical walls to a
semi-natural wide cross-section with sloped sides. It also includes bridge abutments
and piers, which reduce the flow area. Although shown as an illustrative example, the
same procedure was applied for the entire length of the Rječina River estuary.

A first step was connecting the measured cross-sections with profile lines. Cross-
section are usually defined by a different number of segments; hence, they were
interpolated by a constant number of points. A linear interpolation was used in
this case, because the cross-section were already sufficiently detailed. When the
depth measurements are relatively scarce, a cubic spline or Hermite interpolation
is more appropriate [99].
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Figure 6.14: Step-by-step illustration of interpolation method for deriving DTM for a
segment of the Rječina River estuary (from 0+440 m to 0+550 m): (a) measured cross
sections, (b) interpolated profile lines, (c) interpolated cross sections along the centreline,
and (d) digital terrain model.
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Figure 6.14a shows original six cross-sections for the selected segment of the
Rječina River estuary. Notice that two close cross-section were measured to capture
the abrupt transitions from a natural to regulated channel, which includes bridge piers.
The cross-sections were interpolated by 100 points and then connected by the same
number of profile lines using a cubic spline interpolation (Fig. 6.14b). Next, a Bézier
curve that connects centres of every cross-section defined the centreline. Along the
centreline every 5 m a new interpolated cross-section was derived as an intersection of
profile lines with a plane orthogonal to the centreline (Fig. 6.14c). A DTM was finally
interpolated, based on a series of equidistant cross-sections, as illustrated in Fig. 6.14d.

6.5.2 Cross-section geometry parameters

Both numerical models used in this thesis need a definition of a functional relationship
between the water depth h(x) and the cross-section geometry, i.e., the wetted area
A(h, x), width σ(h, x), and wetted perimeter P (h, x). The most convenient approach is
to define cross-sections at every node i or cell Ci, and to tabulate geometric parameters
at each cross-section for h ranging from zmin to zmax with some interval ∆z [93].

Figure 6.15 shows the graphical representation of the tabulated array values of A,
σ and P . In this array, i-th column represents geometrical values for a cross-section
located at a distance (i− 1)∆x from the downstream boundary, and k-th row in each
column represents a geometrical value f(hk) at depth (k − 1)∆z. Therefore, for every
computed h, all three geometrical values are easily interpolated from:

f(h) = hk + f(hk+1)− f(hk)
hk+1 − hk

(h− hk) for hk ≤ h < hk+1, (6.17)

where f(h) is a tabulated array of data for A(h), σ(h) or P (h) at each cross section,
and 1 ≤ k < N , with N being the number of computed values over the water depth.

If cross sections are rectangular or relatively regular, a simple piecewise analytical
equation can be used instead of tabulated data. Even if cross sections are not
regular, some continuous function can be fitted by the least-square method. However,
considering that the Rječina River channel is characterized by semi-natural cross
sections and by bridge piers or abutments, the tabulated method was more appropriate.
For example, when the following values were set for the Rječina River estuary: ∆x = 5
m, ∆z = 0.1 m, zmin = −4.1 m, zmax = +3.0 m, and channel length L = 1410 m;
three 72× 283 arrays defined the resulting cross section geometry (Fig. 6.15).
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Figure 6.15: Tabulated array of cross-section geometrical values for: (a) wetted area A,
(b) channel width σ, and (c) wetted perimeter P .
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Abstract

This chapter presents the observed salinity structure and numerical results of salt-
wedge dynamics in the Rječina River estuary. Both FDM and FVM models were
applied to compute the arrested salt-wedge profile under steady flow conditions. The
FVM model was additionally applied to compute time-dependant salt-wedge profiles
under highly variable flow conditions. Numerical models were validated by comparing
the results to field observations under different flow conditions.
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7.1 Results of arrested salt-wedges

How far does the seawater intrude in salt-wedge estuaries, how does the salinity

structure change under different flow conditions, and more importantly, how well do

numerical two-layer models predict the arrested salt-wedge profile in field conditions?

All of these question were answered in the following sections. First, the field

observations are presented, in particular, the vertical salinity profiles along the

Rječina River estuary under different sea levels and river flow rates. Next, the FDM

model was used to calibrate the interfacial friction factor by fitting the numerical

results to measured salt-wedge profiles in the field. And finally, the performance of the

FVM model was assessed by comparing numerical solutions to measured salt-wedge

profiles and flow rates per unit width.

7.1.1 Field observations of arrested salt-wedges

Table 7.1 presents the observed values from sampling campaigns in the Rječina River

estuary. River flow rates, measured by the ADCP just upstream from the tip of the

salt wedge, ranged from 2.0 to 31.3 m3 s−1, and the sea levels, measured by a water

gauge at the mouth, ranged from -0.07 to +0.75 m asl. The layer-average densities

were computed from S − T profiles observed at samplings points along the estuary

and linearised as previously shown in Fig. 6.7. The reduced gravity g(1− r) ranged

from 0.235 to 0.271, with g = 9.81 m s−2. The interface thickness δi was obtained

from salinity profiles using Eq. (6.12), as illustrated in Fig. 6.7, and then averaged

along the wedge; it ranged from 0.19 to 0.76 m. The upper and lower layer thickness

was computed as a vertical distance between the water surface and the interface, and

between the interface and channel bed, respectively. The interface depth was assumed

to be located in the middle of the interfacial layer, as illustrated in Fig. 6.7. Maximum

squared buoyancy frequency (Eq. 2.15), was computed as a measure of the stratification

strength, from the observed vertical density profiles and then averaged along the

wedge. In the Rječina River estuary N2 ranged from 0.4 to 1.7 s−2, which indicates

the presence of a highly stratified water column under all hydrological conditions.
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Table 7.1: Observed values in the Rječina River estuary for different flow conditions.

No. Q sea level g(1− r) 106 ν h1 h2 δi N2 105 we
(m3 s−1) (m ASL) (m s−2) (m2 s−1) (m) (m) (m) (s−2) (m s−1)

1 2.0 0.40 0.257 0.96 0.40 2.54 0.39 0.71 0.99
2 2.8 0.25 0.268 1.34 0.49 2.30 0.19 1.71 0.98
3 4.8 -0.04 0.237 1.18 0.82 1.68 0.33 0.68 2.79
4 4.8 0.10 0.239 1.26 0.75 1.90 0.32 0.77 1.51
5 5.1 0.04 0.253 1.27 0.79 1.79 0.30 0.71 2.24
6 5.3 -0.07 0.245 1.26 0.82 1.65 0.24 0.94 2.69
7 5.7 0.03 0.235 1.19 0.89 1.69 0.43 0.57 3.87
8 7.8 0.60 0.266 1.25 0.97 2.17 0.54 0.52 4.64
9 10.0 0.12 0.249 1.27 1.44 1.22 0.22 0.98 2.70
10 10.0 0.18 0.244 1.23 1.30 1.43 0.23 0.81 5.74
11 11.3 0.14 0.254 1.34 1.48 1.21 0.34 0.87 3.90
12 11.4 0.60 0.264 1.34 1.36 1.79 0.26 1.12 4.00
13 11.5 -0.01 0.255 1.23 1.51 1.04 0.31 0.89 4.53
14 12.3 -0.04 0.251 1.34 1.53 0.98 0.25 0.98 4.37
15 13.4 0.25 0.271 1.35 1.67 1.13 0.36 0.62 6.69
16 14.1 0.50 0.265 1.30 1.52 1.53 0.31 0.95 7.37
17 16.3 0.16 0.248 1.30 1.80 0.92 0.52 0.53 9.42
18 16.8 0.25 0.268 1.35 1.85 0.96 0.76 0.72 7.82
19 17.2 0.45 0.264 1.34 1.86 1.14 0.48 0.60 8.36
20 17.9 0.75 0.265 1.34 1.66 1.64 0.29 0.84 4.98
21 29.8 0.15 0.258 1.34 2.39 0.36 0.62 0.38 25.88
22 31.3 0.35 0.251 1.33 2.53 0.41 0.65 0.39 27.54

Note: River flow rate Q was measured upstream from the salt-wedge by the ADCP, sea
level was measured by a water gauge at the mouth, g = 9.81 m s−2, layer-average density
ratio r = ρ1/ρ2 was computed from the observed density profiles, freshwater viscosity
ν was computed from the measured density and temperature profiles, h1 and h2 are
the respective upper and lower layer thickness (see Fig. 6.7d), δi is interfacial thickness
(see Fig. 6.7c), N2 is maximum squared buoyancy frequency (Eq. 2.15), and we is
entrainment velocity obtained from the box model (Eq. 6.13 - 6.16). All parameters in
the columns 4 - 10 are averaged along the salt-wedge.
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Figure 7.1: Salinity S (solid) and temperature T (dashed) profiles observed in the Rječina
River estuary near the mouth (P3) for different river flow rates Q.

Salinity structure and stratification

A typical salinity structure of an arrested salt-wedge in the Rječina River shows nearly
constant salinities in each layer along the estuary and strong vertical stratification.
Figure 7.1 shows six characteristic vertical S−T profiles, observed near the mouth (P3,
Fig. 6.1) during different flow rates. Vertical profiles were consistent along the arrested
salt-wedge for steady flow. As expected, the interface depth grows with Q, but the
influence of the upper layer flow on the interfacial layer thickness is also noticeable. For
lower flow rates, a sharp gradient is preserved, as it can be seen in Fig. 7.1a,b,c. As the
flow rate increases above 13 m3 s−1, the interfacial layer becomes more diffusive and
its thickness grows, as illustrated in Fig. 7.1d,e. For high flow rates (Q = 31.3 m3 s−1),
the interface is characterized by a well-defined mixed layer, as shown in Fig. 7.1f.
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Entrainment

The entrainment velocities were estimated by the box model (Eq. 6.13 - 6.16). The
upward water flux w21 was a few times to a few orders of magnitude larger than
the downward water flux w12, and the corresponding we ranged from 1.0× 10−5 to
27.5 × 10−5 m s−1 (Table 7.1). Similar values of we were found at the Ebro River
estuary in Spain [49] and the Jadro River estuary in Croatia [61], both microtidal
salt-wedges. Whereas, the values in macrotidal salt-wedge estuaries, in particular, the
Duwamish River [72] and the Fraser River [64], are one order of magnitude higher,
most likely because of stronger tidal mixing. The box model also indicated that the
lower layer flow rate ranged from −0.1 to −1.0 m3 s−1, directed upstream as a result
of mixing processes, i.e., Q2 varied from 3% to 15% of the total river flow rate Q.

7.1.2 FDM results of arrested salt-wedges

The FDM numerical model was used to calibrate λi by fitting the computed salt-wedge
profiles to observed interface depths along the estuary. Steady flow profiles were
obtained by solving the equations (4.3) - (4.6) for different boundary conditions.

The spatial step was set to ∆x = 1 m, and the calculation started at the last
bridge near the river mouth (P1, Fig. 6.1). The downstream boundary was forced by
the flow rates Q1 and Q2, critical upper layer depth h1, and total water depth H at
the mouth, which corresponded to observed sea levels. Additionally, the model was
defined by r, computed from layer-average densities observed in the field (Table 7.1).
The entrainment velocity we was assumed constant along the wedge, and computed by
the box model for each observation (Table 7.1). The wall and bed friction factors were
calculated from Manning’s roughness factor nM = 0.025 s m−1/3 (for channels with
gravel bottom and concrete/stone sides). Finally, the numerical solutions were fitted
to the observed interface depths by systematically varying λi as described earlier. The
interfacial friction factor was assumed constant along the wedge, and the best fit was
determined by the visual inspection and by the smallest RMSE (Eq. 4.7).

Figure 7.2 shows three numerical solution of arrested salt-wedge profile, for several
different Q and sea levels, which are representative of those for a total of 22 simulations
performed (see Appendix A for all results). The computed length of the arrested
salt-wedge and the slope of the interface is sensitive to λi, which needed to be fitted
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Figure 7.2: Numerical solutions of the salt-wedge shape compared against field observations,
for different river flow rates Q. Both λfiti (fitted interfacial friction factor) and λAJi (computed
from the Arita and Jirka model, Eq. 2.9) were considered.
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to obtain satisfactory agreement with field observations. When existing interfacial
friction laws [94, 29, 3] were applied to calculate λi, they either overestimated or
underestimated the length of the salt-wedge.

The numerical solution computed with two different interfacial friction factors
are presented; λfiti , obtained by the best fit with the field observations, and λAJi ,
computed from the Arita and Jirka’s friction equation (2.9). Results suggests that
the model by Arita and Jirka [2] generally overestimates λi and the interface slope,
and therefore underestimates the salt-wedge intrusion length (Fig. 7.2). The values
of λfiti and λAJi sometimes disagreed by an order of magnitude (Fig. 7.2). Sorgard
[89] also found that the model by Arita and Jirka underestimates the salt-wedge
length in the Glomma River estuary.

7.1.3 FVM results of arrested salt-wedges

The FVM numerical model was used to validate the computed arrested salt-wedge
profiles along the Rječina River estuary, under steady flow conditions. The model
domain was divided by M = 80 cells, with the spatial step ∆x = 10 m and temporal
step ∆t = 0.5 s, to satisfy the CFL condition. Density ratio was set on a case-by-case
basis, according to the measured upper and lower layer densities; and it ranged
from 0.972 to 0.976 (Table 7.1). The entrainment velocity was assumed constant
along the wedge, and was computed by the box model for each case (Table 7.1).
The wall and bed friction factors were calculated from Manning’s roughness factor
nM = 0.025 s m−1/3. Finally, fitted λi, obtained from the FDM analysis, was used as
the interfacial friction factor (Table 8.1). The upstream and downstream boundary
conditions were forced by the constant river flow rate Q1(xM , t) = Q1(xM , 0), the
critical upper layer depth h1(x0, t), and the total depth H(x0, t) at the mouth, which
corresponded to the observed sea levels. The initial condition was obtained from
the previous FDM steady-state solution, for the same flow and sea-level conditions
(Fig. 7.2). The simulation lasted unit steady-state conditions were reached.

Figure 7.3 shows the computed and observed arrested salt-wedge profiles, for the
same three cases as in the previous subsection. In general, for higher Q the arrested
salt-wedge length was shorter and the upper layer was thicker. Similarly, for higher sea-
level the arrested salt-wedge intruded further upstream. However, these results suggest
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Figure 7.3: Numerical solutions of the arrested salt-wedge shape compared against field
observations, for different river inflow rates Q.
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that the salt-wedge length depends also on the channel geometry; stepper slopes or
sills may limit the salt-wedge from advancing further upstream. The variable slope of
the interface was mainly the result of the irregular channel geometry in the estuary.

Model validation

For each arrested salt-wedge case, the computed salt-wedge profile was compared
against interface depths observed along the estuary. The following skill metrics were
used to validate the numerical model and quantify the agreement between the data:
mean absolute error (MAE), correlation coefficient (CC), and skill score (SS), which
are respectively defined as follows [70]:

MAE = 1
N

∑
|Xmod −Xobs|, (7.1)

CC =
∑(

Xmod −Xmod
) (
Xobs −Xobs

)
√∑(

Xmod −Xmod
)2∑(

Xobs −Xobs
)2
, (7.2)

SS = 1−
∑(

Xmod −Xmod
)2

∑(
Xobs −Xobs

)2 , (7.3)

where N is the number of data points, Xmod is modelled data, Xobs is observed
data, and overbar represents a mean value. A perfect correlation is indicated by
MAE = 0, CC = 1, and SS = 1, whereas CC = 0, SS = 0, and large values of
MAE indicate no correlation.

Overall, all skill metrics for arrested salt-wedge profiles indicated a strong agreement
between the FVM model results and observed interface depths, with MAE = 0.12 m,
CC = 0.94, and SS = 0.87.

7.2 Results of time-dependant salt-wedges

This section presents the observed and computed response of a salt-wedge in the
Rječina River estuary to changes in the river flow rate. Furthermore, the FVM
numerical model was validated by comparing the solutions against field observations
for variable flow conditions.

Krvavica et al. [54] showed that the flow rate in the lower reaches of the Rječina
River during summer months is highly sensitive to overflows from the Rijeka HPP. On
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Figure 7.4: Velocity u (solid) and salinity S (dashed) profiles observed in the Rječina
River estuary near the mouth (P3): (a) to (c) salt-wedge intrusion caused by a decrease in
the river flow rate from 10 to 4.6 m3 s−1, and (d) to (f) salt-wedge receding towards the
mouth caused by an increase in the river flow rate from 4.2 to 13.4 m3 s−1.

1 July 2015 the Rijeka HPP started and stopped on two occasions in an eight-hour
period (from 07:00 to 15:00), which caused highly variable conditions to form in the
estuary, and the river flow rate ranged between 4.2 and 13.9 m3 s−1 (Fig. 7.5a).

7.2.1 Fields observations of time-dependant salt-wedges

Figure 7.4 presents several characteristic salinity and velocity profiles obtained from
measurements on 1 July 2015, near the river mouth (P3, Fig. 6.1), and for different
flow rates. Velocity profiles obtained under steady-state conditions are characterized
by a nearly stagnant lower layer and a characteristic turbulent logarithmic shape
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in the upper layer. Figure 7.4a shows S − u profile for the arrested salt-wedge and
Q1 = 9.8 m3 s−1. During a decrease in the river flow, the salt-wedge advanced
upstream, which resulted in negative velocities in the lower layer. Figure 7.4b shows
S − u profile for Q1 = 6.3 m3 s−1 and Q2 = −1.9 m3 s−1. After the equilibrium
was established between the inertial forces, pressure gradient and friction forces, the
salt-wedge became arrested again. Figure 7.4c shows S − u profile for the arrested
salt-wedge, where Q1 = 4.6 m3 s−1 and Q2 = −0.4 m3 s−1.

Similarly, Fig. 7.4d shows S − u profile for an arrested salt wedge and Q1 = 4.2
m3 s−1. As the flow rate increased the salt-wedge was pushed out of the estuary
until the force equilibrium was established. Figure 7.4e shows S − u profile for
Q1 = 9.6 m3 s−1 and Q2 = 4.6 m3 s−1, and Fig. 7.4f shows S − u profile for the
arrested salt-wedge, with Q1 = 13.4 m3 s−1.

7.2.2 FVM results of time-dependant salt-wedges

The FVM numerical model was applied to compute the salt-wedge profiles along
the Rječina River estuary under time-dependant flow conditions, and to validate the
proposed model. The model domain was divided by M = 160 cells, with the spatial
step ∆x = 5 m and temporal step ∆t = 0.25 s, to satisfy the CFL condition. A
denser mesh, in comparison to the steady-state cases, was chosen to accurately capture
the salt-wedge movement. The density ratio was set to 0.975, corresponding to the
observed layer-averaged freshwater density ρ1 =1000 kg m−3 and salt-water density
ρ2 =1026 kg m−3. The entrainment velocity we was assumed constant along the wedge
but varied in time according to the average flow rate (Table 7.1). The wall and bed
friction factors were calculated from Manning’s roughness factor nM = 0.025 s m−1/3.
Finally, a fitted interfacial friction factor was used; λi was also considered constant
along the wedge, but varied in time corresponding to the upper layer flow rate.

The upstream and downstream boundary conditions were forced by the river
inflow Q1(xM , t), which corresponded to the observed river hydrograph (Fig. 7.5a),
the critical upper layer depth h1(x0, t) and the total depth H(x0, t) at the mouth,
which corresponded to the observed sea-levels (Fig. 7.5b). The numerical simulation
started at 07:20 and lasted until 15:20 (480 min) to capture all the changes in the
salt-wedge shape (at 15:20 the conditions in the estuary became stationary and
the arrested salt-wedge was formed).
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Figure 7.5: Boundary conditions for a time-dependant salt-wedge case: (a) upstream flow
rate and (b) downstream sea-level.

Figure 7.6 presents the computed and observed salt-wedge profiles along the estuary
at different time steps. Both numerical solutions and field observations showed that
the salt-wedge responded almost instantly to changes in the river flow rate by moving
along the estuary in either upstream or downstream direction. When Q increased,
the salt-wedge receded downstream towards the mouth, and vice versa.

Figure 7.7 shows the computed and observed flow rates per unit width in each layer.
Near the river mouth the upper layer q1 varied proportionally to Q; however, the lower
layer q2 seemed to respond more to the movement of the salt-wedge than to the river
flow rate. When Q increased, q2 was positive and the lower layer receded downstream.
Similarly, when Q decreased, q2 was negative and the lower layer intruded upstream.
In both cases, after an equilibrium condition was reached (i.e., an arrested salt-wedge
was established), q2 returned to near-zero values.

Field validation

For time-dependant salt-wedge case, the computed salt-wedge profiles were compared
against interface depths observed along the estuary at different time steps. Additionally,
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Figure 7.6: Numerical solutions of the time-dependant salt-wedge profile compared against
field observations, at different time steps, for variable river flow rate Q.
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Figure 7.7: Computed and observed changes of flow rates per unit width in the upper (q1)
and lower (q2) layer, near the mouth (P3, Fig. 6.1).

q1 and q2 near the mouth, were also compared against field observations during
the simulation. Once more, the following skill metrics were used to validate the
model and quantify the agreement between the data: MAE (Eq. 7.1), CC (Eq.
7.2), and SS (Eq. 7.3).

All skill metrics indicated a strong agreement between the modelled and observed
data. For h1, the MAE was 0.12 m, CC = 0.9, and SS = 0.8. For flow rates per unit
width the agreement was even stronger; for q1 the MAE was 0.018 m2 s−1, CC = 0.99,
and SS = 0.97, and for q2 the MAE was 0.014 m2 s−1, CC = 0.95, and SS = 0.89.
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Abstract

This chapter discusses the numerical results presented in the previous chapter. A
particular emphasis is placed on parametrisation of interfacial processes, namely the
interfacial friction factor and entrainment rate. Furthermore, the main salt-wedge
processes such as the hydraulic control at the downstream boundary, stratification
strength under both steady and variable flow conditions, and propagation rates of
the salt-wedge front are additionally discussed.
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8. Discussion of salt-wedge dynamics

8.1 Discussion of interfacial processes

Field observations and numerical results are discussed and examined here to better
understand the interfacial processes in microtidal salt-wedge estuaries. Table 8.1
presents computed flow parameters obtained after fitting numerical solutions to
the observed data. All presented values are computed from numerical solutions
based on the assumption of zero interfacial layer thickness, and they represent an
along-wedge average values.

The bed friction factor λb = λw was obtained from Manning’s equations with
nM = 0.025 s m−1/3, and ranged from 3.4×10−3 to 3.9×10−3. Interfacial friction
factor was fitted as previously described, and ranged from 7.0×10−5 to 1.6×10−3. The
agreement between computed and observed interface depths was quantified by RMSE
(Eq. 4.7), which showed a mean value of 0.11 m (smaller than the mean value of the
interfacial thickness δ̄i = 0.38 m, presented in Table 7.1). The computed velocity
difference ∆u ranged from 0.17 to 0.47 m s−1. Interfacial shear velocity u∗ ranged
from 1.6×10−3 to 17.7×10−3 m s−1, and the entrainment rate E ranged from 0.5×10−4

to 6.2×10−4. Non-dimensional parameters showed the following values: Re ranged
from 6× 104 to 6× 105, Fd ranged from 0.53 to 0.64, and Ri ranged from 3.3 to 4.5.

Figure. 8.1 illustrates how the governing parameters change with the river flow
rate. In general, as Q increases, salt-wedge length becomes shorter and the upper
layer is thicker. Both h1 and ∆u increase with Q (Fig. 8.1a,b); therefore, Re also
increases with Q. The correlation of h1 and ∆u with Q is non-linear and very strong
(R2 = 0.98). However, it seems that as a results of a sloped channel bed and different
sea levels, Fd only slightly increases with Q (Fig. 8.1c); therefore, the correlation
in this case is relatively weaker (R2 = 0.57).

In most salt-wedge estuaries, strong stratification and even the salt-wedge structure
itself is maintained by high river flow, which dampens the vertical mixing caused
by tidal motions [36]. In microtidal salt-wedges, on the other hand, an increase
in Q may result in high shear velocities at the interface, which produce turbulent
energy and increases vertical mixing [90]. The observations show that when the river
flow rises and the stratification is reduced (Fig. 8.1d), both we (Fig. 8.1e) and u∗

(Fig. 8.1f) increase with Q. Whereas, at low Q strong stratification reduces both
interfacial shear and the entrainment.
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8. Discussion of salt-wedge dynamics

Table 8.1: Fitted friction factors and computed mixing and flow parameters in the Rječina
River estuary.

No. 103 λb 104 λi RMSE ∆u 103 u∗ 104 E 10−5 Re Fd Ri
(m) (m s−1) (m s−1)

1 3.4 1.0 0.05 0.17 1.7 0.59 0.6 0.54 3.9
2 3.5 0.7 0.05 0.20 1.6 0.50 0.7 0.56 3.6
3 3.7 4.0 0.07 0.22 4.4 1.25 1.3 0.53 4.1
4 3.7 1.2 0.11 0.23 2.5 0.66 1.2 0.56 3.6
5 3.7 1.4 0.08 0.24 2.8 0.94 1.3 0.55 3.7
6 3.7 2.0 0.14 0.24 3.4 1.13 1.4 0.56 3.7
7 3.7 1.8 0.10 0.25 3.2 1.58 1.6 0.56 3.6
8 3.5 2.0 0.03 0.27 3.8 1.69 1.8 0.56 3.6
9 3.8 11.0 0.07 0.28 9.3 0.96 2.4 0.53 4.5
10 3.8 6.0 0.09 0.29 7.1 1.98 2.5 0.56 3.9
11 3.8 7.5 0.07 0.31 8.4 1.27 2.6 0.57 3.9
12 3.6 9.5 0.13 0.30 9.0 1.35 2.5 0.53 4.3
13 3.6 6.0 0.07 0.33 7.9 1.39 2.9 0.60 3.5
14 3.6 5.0 0.07 0.34 7.5 1.29 2.9 0.62 3.3
15 3.6 10.5 0.15 0.33 10.6 2.03 3.0 0.56 4.1
16 3.7 4.0 0.15 0.34 6.7 2.17 3.2 0.57 3.6
17 3.6 7.0 0.12 0.37 9.6 2.53 3.8 0.61 3.3
18 3.6 13.0 0.11 0.37 13.2 2.13 3.7 0.59 3.7
19 3.6 6.0 0.12 0.36 8.8 2.29 3.7 0.59 3.6
20 3.6 2.0 0.04 0.37 5.2 1.33 3.7 0.60 3.3
21 3.9 11.0 0.36 0.47 15.3 5.56 6.2 0.64 3.7
22 3.8 16.0 0.30 0.44 17.7 6.19 6.3 0.61 4.1

Note: bed friction factor λb = λw was obtained from Manning’s equation with nM =
0.025 sm−1/3, interfacial friction factor λi was fitted to the observed data, ∆u = u1−u2,
where u1 and u2 are the respective upper and lower layer velocities computed by the
numerical model, u∗ =

√
τint/ρ is shear velocity, E = we/∆u is entrainment rate, Re is

Reynolds number, Fd is densimetric Froude number, Ri is bulk Richardson number,
and RMSE denotes root mean square error for quantifying the agreement between
numerical solutions and observed interface depths.
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Figure 8.1: Dependence of the: (a) upper layer thickness h1, (b) velocity difference ∆u,
(c) densimetric upper layer Froude number Fd, (d) squared buoyancy frequency N2, (e)
entrainment velocity we and (f) interfacial shear velocity u∗, on the river flow rate Q.
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Note that a strong correlation is also observed between we and Q (R2 = 0.96), as
well as between u∗ and Q (R2 = 0.87), which is surprising considering the complexity
of turbulent processes in stratified environments. The strong correlation also justifies
numerous attempts to derive a suitable parametrization of these interfacial processes
based on bulk flow parameters, which will be further discussed in the following sections.

8.1.1 Entrainment parametrisation

Figure 8.2a shows the entrainment rates plotted against the bulk Richardson numbers
and several entrainment laws from the literature. Based on numerous experiments
[69, 13, 74, 26, 71, 103] it is generally considered that E reduces with increasing Ri.
Surprisingly, in this case, Ri does not seem to be the main governing parameters for
E; the data are in the expected range, but E shows a wide range of values, from
5×10−5 to 6×10−4, for a narrow range of bulk Richardson numbers, 3.3 < Ri < 4.5.

Figure 8.2b shows another comparison between the observed E and the entrainment
parametrisation of Cenedese and Adduce (Eq. 2.14). The agreement is also week in
this case, but the values are in the expected range. Once more, the main difficulty
is that the observations show a wide range of E for similar densimetric Froude
numbers, 0.53 < Fd < 0.64. According to Eq. (2.14), however, the entrainment
rate is expected to increase over the same range as Fd increases from 0.44 to 0.77,
which is relatively close to the computed Fd values.

The scattering for similar Ri could be explained by the entrainment in estuaries be-
ing intermittent and influenced by local conditions [84]. Another possible explanation
could be found in Strang and Fernando’s study [92], were a considerable scatter was
also observed in the range 3.2 < Ri < 5.8. They found that as Ri increases from 3.2
to 5.8, interfacial instabilities change from K-H waves to asymmetric Holmboe waves.
The resonating K-H and Holmboe waves may be responsible for a wide disparity
of entrainment rates. However, statements about the role of specific interfacial
instabilities made solely on the range of bulk Richardson numbers is qualitative
at best. Both these comparisons suggest that the entrainment rate is difficult to
predict based on bulk flow parameters, such as Ri or Fd. Clearly, local gradient
measurements are more adequate.

To examine the parameters that govern the mixing processes in more details,
the entrainment rates are plotted against N2 (Fig. 8.3a), u∗ (Fig. 8.3b) and their
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Figure 8.2: Dependence of entrainment rate E on (a) bulk Richardson number Ri (with
comparison to equations by Buch [13], Christodoulou [26], Moore and Long [69], Narimousa
and Fernando [71], Pedersen [74], and Walker and Hamill [103]) and (b) densimetric Froude
number Fd (with comparison to Cenedese and Adduce [24]).

non-dimensional ratio N2/ (u2
∗/ν)2 (Fig. 8.3c). The latter parameter, although related

to, should not be confused with the Richardson gradient number (Eq. 2.17), which
requires a detail measurement of the velocity profile. In this case, however, the shear
component was only approximated by the interfacial shear velocity, i.e., the fitted
interfacial friction factor λi and computed layer-average velocities. Entrainment rates
were found to reduce with increasing stratification, and increase with interfacial shear
velocity, which is in agreement with other studies [90]. The dependence of E on the
ratio of stratification to shear is strong (R2 = 0.84), suggesting that the entrainment
is more easily predicted by gradient, rather than bulk flow parameters.

However, if the average friction factor, λ̃ = (2λi + λb)/2, is combined with
Ri, a satisfactory correlation may still be found between E and bulk parameters.
Grubert [40, 41] similarly found that shear stress should be included in entrainment
parametrisations. Based on the experimental and field data, Grubert proposed the
following equation for the entrainment rate, E = 2.4Ri−3/2

∗ Ri1/2, valid for 3.5 <

Ri < 20 [41]. Since Ri∗ = Riλ−1, a similar dependence of E on bulk parameters
Ri and λ̃ (R2 = 0.66) was found here:

E ∝ Ri−2λ̃5/2 (8.1)
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Figure 8.3: Dependence of entrainment rates E on: (a) squared buoyancy frequency
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Figure 8.3d shows the dependence of E on Ri−2λ̃5/2, which supports the conclusions
by Grubert [41] that E is not a function of Ri alone, and that some form of friction
should also be included. The entrainment in arrested salt-wedges is clearly influenced
by the shear stress at the interface and channel bed, which may be the main source
of turbulent energy production. In comparison, for macrotidal salt-wedges it was
found that during the ebb, the interfacial shear stress was the dominant source of
turbulent mixing, while the shear stress at the channel bed was the main source
of turbulent mixing during the flood [53]. Furthermore, the shear instabilities at
the interface may even be the dominant mechanism for the initial breakdown of
the salt-wedge structure itself [104, 78].

8.1.2 Interfacial friction parametrisation

No consensus currently exists on what interfacial friction law should be applied for
two-layer salt-wedge models, but the most frequently used is the one by Arita and Jirka
[2]. Arita and Jirka [2] extended a two-layer model by including the entrainment, and
proposed a new semi-empirical equation, which consists of a laminar and turbulent
contribution (Eq. 2.9). The laminar contribution is dominant for small Re, and
Eq. (2.9) suggests that λi decreases as Re increases. the turbulent contribution, on
the other hand, is dominant for large Re, and Eq. (2.9) suggests that λi becomes
independent from Re and increases with Fd (Fig. 8.4b). The dependence of λi on
governing parameters is, however, difficult to quantify for the transition between the
laminar and turbulent state. Furthermore, Arita [2] found that the stratified flow
characterized by large Re numbers may experience local laminarisation at the interface,
which makes the efforts to derive a suitable parametrization even more complicated.

Figure 8.4a,b,c shows how λi relates to E, ReFd2 (with the Arita and Jirka model
given by Eq. 2.9), and Re. Arita and Jirka linked the interfacial friction factor to
the entrainment rate, so that the following equality holds λi = 2E [2]. The observed
λi does indeed increase with E (Fig. 8.4a); furthermore, it shows a similar ratio
λi/E ≈ 2.8 as proposed in [2]. The discrepancies between fitted friction factors and
Eq. (2.9) are noticeable, however. For the range of governing parameters considered
here (6× 104 < Re < 6× 105 and 0.5 < Fd < 0.7) we would expect λi to be confined
to a more limited range of values (5× 10−4 < λi < 8× 10−4). Furthermore, λi should
be independent from Re or decrease with increasing Re.
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Figure 8.4: Dependence of the interfacial friction factor λi on: (a) entrainment rate E,
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In contrast, the observed values of λi increase with ReFd2 over a wide range of
values, from 7.0×10−5 to 1.6×10−3 (Fig. 8.4b). It seems, however, that the observed
data are in the transitional region of the parameter space, for which Eq. (2.9) is based
only on empirical assumptions. When evaluated separately, λi shows a wide range of
values for similar Fd and a strong positive correlation with Re (Fig. 8.4c, R2 = 0.62).

In search for a more accurate dependence of λi on bulk flow parameters, curve
fitting resulted in the following empirical relationship, which shows minimal scattering
and the strongest correlation coefficient (see Fig. 8.4d):

λi ∝
(
ReRi3

)0.9
(8.2)

Although having high correlation (R2 = 0.82) and a satisfactory predictive capacity
for the salt-wedge in the Rječina River estuary, Eq. (8.2) is empirical and should be
used with caution in other microtidal salt-wedges. A high exponent for Ri could be
explained by a narrow range of Richardson numbers considered here. An increase of λi
with Re, however, is in contrast to previous studies [29, 2] and deserves more discussion.

Since ν is fairly constant in all considered observations, an increase of λi with
Re should primarily be seen as an increase with Q and, consequently, with both h1

and ∆u. It seems that interfacial processes in the Rječina River estuary exhibit the
following mechanism. As the river flow rate increases, so does the upper layer velocity
and the shear velocity at the interface, which increases turbulent mixing; therefore,
interfacial layer becomes more diffused and the stratification is weakened (Fig. 8.1).
Furthermore, it seems that the turbulent mixing also increases the apparent roughness
at the interface; hence, a positive correlation is observed between λi and Re. This is,
however, only an assumption, and without direct observations of the velocity profile
and the Reynolds stress no definite claims can be made.

There are, unfortunately, no similar field data sets available in the literature
that are suitable for a comparison; only a few studies provided single values for the
interfacial friction factor, e.g., λi = 1.6×10−4 in the Glomma River [89], λi = 5×10−4

in the Fraser River [64], and slightly higher λi = 1.5 × 10−3 in the Neretva River
[62] and λi = 2× 10−3 in the Jadro River [61]. These values are comparable to the
range of values observed in the Rječina River estuary.
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control section assumed to be located at the last bridge near the mouth (P1, Fig. 6.1).

8.2 Discussion of hydraulic control

Although some salt-wedge models place a hydraulic control at the river mouth, in the

present work an internally critical flow was assumed to be found at the last bridge

near the mouth of the Rječina River estuary, i.e., at a location where a strong channel

contraction is formed by bridge piers and abutments (P1, Fig. 6.1). To verify how

well was this condition satisfied in practice, the observed upper layer thickness at P1

was compared to the computed boundary condition defined by G2 = 1.

Figure 8.5 shows the comparison between the computed and observed upper layer

thickness at the last bridge near the mouth for all considered river flow rates in an

arrested salt-wedge. The agreement is satisfactory, and all skill metrics indicate a

strong correlation, with MAE = 7.2 cm, CC = 0.98, and SS = 0.95. The choice

of both position and definition of the downstream boundary condition is therefore

justified. These findings suggest that when the exact location of the river mouth is

not easily identified, the channel contraction can be used instead.
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8.3 Discussion of stratification strength

Geyer et al. [37] reported typical values of squared buoyancy frequency as a measure
of stratification strength in estuaries. The values range from 0.0025 to 0.01 s−2 in
partially mixed estuaries, and up to 0.1 s−2 in salt-wedge estuaries [37]. In the Hudson
River estuary, for example, N2 only occasionally reached a maximum of 0.1 s−1 [75].
Similar upper values were also found in other macrotidal salt-wedge estuaries, such
as the Columbia River [53] and Snohomish River [104].

In the Rječina River estuary the observed N2 values ranged from 0.3 up to 1.7 s−2

(Fig. 8.1d), which is over one order of magnitude larger than any value reported from
other field studies. Furthermore, it seems that in the absences of tides, the river flow
has a negative influence on the stratification. This is expected, however, because the
turbulence produced at the channel bed or interface may also induce vertical mixing
[90]. As Q increases, the shear stress exerted on the interface becomes more intense,
the interfacial instabilities start to develop and vertical mixing increases. High Q, in
this case, actually diffuses the interface layer and weakens the stratification. In the
Rječina River estuary N2 subsides with higher river flow rate until the salt-wedge
is completely expelled from the estuary (Fig. 8.1d).

For a time-dependant salt-wedge observed on 1 July 2015 the buoyancy frequency
varied slightly from 0.3 to 1.3 s−2 under variable Q (Fig. 8.6). During the rising
flow, the salt-wedge front receded towards the river mouth, and the interface layer
became more diffused, which weakened the stratification. After a force equilibrium was
established, highly stratified conditions were quickly restored. During the falling river
flow, on the other hand, the salt-wedge front advanced upstream, but the stratification
was unaffected. The average salinities in the upper and lower layer remained almost
constant during all stages of the flow rate variations.

A similar mechanism was observed in the Columbia River estuary [53] under
different tidal phases. During the ebb tides, when the salt-wedge front receded,
the shear stress at the interface increased the turbulent mixing, which weakened
the stratification, but strong longitudinal density gradients quickly restored the
salinity structure. During the flood tides, on the other hand, the salt-wedge front
advanced upstream, and the shear stress at the channel bed was the dominant
source of turbulence.

118



8. Discussion of salt-wedge dynamics

50 100 150 200 250 300 350 400 450 500
990

1000

1010

1020

1030

Time t (min)

ρ
(k
g
m

−
3
)

10
−2

10
−1

10
0

10
1

N
2
(s

−
2
)

ρ1 ρ2 N 2

Figure 8.6: Observed density in the upper ρ1 and lower ρ2 layer and maximum squared
buoyancy frequency N2, averaged along the salt-wedge, during a simulation of a time-
dependant flow observed on 1 July 2015.

8.4 Discussion of salt-wedge propagation rates

Numerical simulations showed that during a variable river flow, observed on 1 July
2015, the salt-wedge length varied between 600 m for Q = 4.3 m3 s−1 and 375 m
for Q = 13.9 m3 s−1. Figure 8.7 shows the propagation rates of the salt-wedge front
computed from the changes in the salt-wedge length along the estuary. During the first
wave, when Q increased from 4.3 to 9.8 m3 s−1, the salt-wedge front receded at a rate
of -0.06 m s−1. When Q decreased back to 4.2 m3 s−1, the salt-wedge front advanced
upstream at a rate of 0.1 m s−1. Similarly, during the second wave, when Q increased
to 13.9 m3 s−1, the salt-wedge front receded at a rate of -0.15 m s−1, and when Q
decreased back to 4.2 m3 s−1, the salt-wedge front advanced at a rate of 0.1 m s−1.

Figure 8.7 indicates that the salt-wedge propagation rates are positively correlated
with the river flow rate, i.e., higher the increase in the river flow rate, higher the
propagation rate. However, this dependence was not true for the upstream propagation
rates, which were nearly the same in both cases.

A parallel can therefore be made with the propagation rate of a salt-wedge
front during ebb and flood tides. Indeed, Geyer and Farmer [38] showed that the
advancement of the salt-wedge front in the Fraser River due to flood tides is mainly
influenced by the shear stress at the channel bed. They computed that the salt-
wedge front advanced at a rate of 0.7 m s−1, which is a few times larger than the
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Figure 8.7: Computed movement of the salt-wedge front and corresponding propagation
rates during the variable flow observed on 1 July 2015.

values in the Rječina River estuary. Clearly, this comparison can only be made
qualitatively because of the different driving forces involved, i.e., river flow in the
Rječina River and tides in the Fraser River.
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Abstract

This chapter concludes the thesis by summarizing the presented work and emphasizing
the specific contributions in regards to proposed numerical models and observed
salt-wedge dynamics. Finally, several recommendations for future work in numerical
modelling of salt-wedge estuaries are proposed.
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9.1 Summary

The goal of this thesis was to develop a 1D two-layer numerical model for computing
dynamic processes in salt-wedge estuaries. Two numerical models were proposed; the
first one was based on a finite difference method, which was used to compute the
arrested salt-wedge profile and to calibrate the interfacial friction factor, whereas
the second one was based on a finite volume method and used to simulate both
the arrested and time-dependant salt-wedge.

The outstanding questions that needed to be answered and solved were: Which
boundary conditions are appropriate for a salt-wedge flow in a two-layer model? How
to solve the wet-dry transitions occurring at the salt-wedge front in channels with
irregular geometry? How to deal with the possible loss of hyperbolicity? How to
numerically treat and quantify the interfacial friction and entrainment? And finally,
show how well can a 1D numerical model predict the salt-wedge dynamic processes
under steady and time-dependant flow conditions in real-life applications.

All questions were solved and presented in this thesis. The performance of
proposed models was verified and validated for both steady and highly variable flow
conditions by comparing the numerical solutions against field observations in the
Rječina River estuary. A combination of numerical experiments and field observations
additionally allowed to further investigate and discuss the main physical processes
in microtidal salt-wedge estuaries, such as hydraulic flow regimes, stratification
strength, and propagation rates.

The main findings and contributions of this thesis are summarized into two
categories; those assessing the performance of numerical models and those examining
physical processes in microtidal salt-wedges.

9.1.1 Numerical models

A salt-wedge estuary was simplified to an idealized one-dimensional system composed
of two shallow layers of different densities, separated by an interface of zero thickness.
Based on the laws for conservation of mass and linear momentum, the governing
equations were derived as a two-layer conservative system of shallow water equations
with source terms. These partial differential equations were solved by a finite volume
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method, or simplified to a steady state, written as a system of ordinary differential
equations, and then solved by a finite difference method.

The fundamental assumption made here − a reduction of salt-wedge estuaries to
a two-layer shallow water system − was justified. Both models agreed favourably
with field observations in the Rječina River estuary. Furthermore, even the flow
rates in both layers were successfully validated against field observations under highly
variable flow conditions. It should be noted, though, that the Rječina River estuary is
influenced by a microtidal sea and that highly stratified water column was preserved
under a wide range of flow conditions.

FDM numerical model

The steady-state flow in arrested salt-wedge was successfully solved by the implicit
trapezoidal method, which is based on a finite difference method. Inclusion of the
irregular channel geometry, friction, and entrainment resulted in a more complex
model; a system of four ordinary differential equations had to be solved in comparison
to one equation models, which are regularly found in the literature. The results
confirmed that additional complexity introduced in the model was justified. The
computed salt-wedge profile is more accurate in comparison to single equation models,
and the entrainment proved to impart a notable impact on the salt-wedge flow. This
model, however, is sensitive to the interfacial friction factor, which needed to be
calibrated to obtained good agreement with field observations.

The steady salt-wedge model based on a FDM has its limitations; in addition
to being unsuitable for variable flow rates or sea-levels, the model is inadequate to
deal with transcritical flow, which may occur at the salt-wedge front, exit region, or
at strong channel contractions. Therefore, time-dependant shock-capturing models
are more appropriate in practical applications.

FVM numerical model

The system of partial differential equations describing a time-dependant two-layer flow
in salt-wedge estuaries was solved by a modified Q-scheme, which is based on a finite
volume method. Numerical treatment of the coupled terms appearing as a result of two
layers, and source terms corresponding to irregular geometry was a problem recently
solved by Castro et al. [18] for a two-layer exchange flow in sea straits. However, in
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the process of developing a similar model for salt-wedge estuaries additional numerical
challenges emerged; in particular, the approximation and quantification of friction and
entrainment terms, as well as the problem of wet-dry transitions in the lower layer.

The source terms corresponding to friction and entrainment were upwinded
similarly as terms corresponding to irregular geometry. This approximation proved
successful in satisfying the well-balanced property, both formally and in practical
applications. The wet-dry transition was treated by imposing a tolerance depth
parameter that controlled the wet/dry state in each cell. Furthermore, the source
term corresponding to bed slope was modified at the salt-wedge front to ensure the
well-balanced property of the scheme.

The numerical model was verified by comparing the results against analytical
models and a steady-state solver for idealized examples, and validated by comparing
numerical results to field observations in the Rječina River estuary. When compared
to analytical solutions of an arrested salt-wedge flow in simplified channel geometry,
the agreement was satisfactory for all considered cases. Furthermore, the solutions
were almost identical compared to the FDM model for both simplified and variable
channel geometry. Finally, the model validation revealed that the proposed scheme
was stable and accurate in computing the arrested salt-wedge profile in the Rječina
River estuary. The FVM model also captured time-dependant salt-wedge profiles
and flow rates for highly variable flow conditions.

Downstream boundary condition

In both numerical models, the downstream boundary condition was defined by a
hydraulic control positioned at the last bridge near the mouth, i.e., a strong channel
contraction formed by bridge piers and abutments. The upper layer thickness was
computed from the internally critical flow condition defined by a composite Froude
number. The agreement with field observations was satisfactory, which indicates that
a hydraulic control is established at a point of strong channel contractions.

9.1.2 Salt-wedge dynamics

The following general behaviour of arrested salt-wedges was observed in the Rječina
River estuary. As the river flow increases the salt-wedge is pushed out downstream
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and the upper layer thickness and velocity also increases. When the river flow
decreases, on the other hand, the salt-wedge intrudes further upstream and the upper
layer thickness and velocities reduce. Similarly, for lower sea-level the salt-wedge
recedes downstream, and vice versa.

Propagation rates

Based on numerical solutions of time-dependant salt-wedges, which were validated
by field observations, propagation rates of the salt-wedge front were also examined.
As expected, the salt-wedge responded almost instantly to the river inflow; when the
flow rate increased, the salt-wedge was pushed downstream until a force equilibrium
was established and an arrested salt-wedge was formed. When flow rate decreased,
the salt-wedge advanced upstream until an arrested salt-wedge was formed.

Propagation rates of the salt-wedge front in the downstream direction, during a
flow increase, seem to be influenced by changes in the river flow rate. On the other
hand, propagation rates of the salt-wedge front in the upstream direction, during a
flow decrease, were nearly constant regardless of the river flow rate.

Stratification strength

The salinity structure and stratification were examined based on field observations of
vertical salinity profiles along the estuary. For steady flow, the average salinity in each
layer was nearly constant along the salt-wedge, suggesting that the vertical mixing
was not strong enough to influence the global salinity structure. The stratification
strength, expressed by the squared buoyancy frequency, was among the highest every
reported in the literature, reaching up to 1.7 s−2. Even in the time-dependant case,
under highly variable river flow, the stratification remained very strong, and N2

only slightly varied between 0.3 and 1.3 s−2.
In contrast to macrotidal salt-wedges, river flow rates impart a negative influence

on the stratification in microtidal salt-wedges. For higher flow rate the interfacial layer
was more diffused; therefore, the stratification was weaker. Similar behaviour was
also observed under variable river inflow. During the rising flow, the salt-wedge was
pushed downstream, the entrainment was intensified, and the interfacial layer became
more diffused, which weekend the stratification. After an arrested salt-wedge was
formed, entrainment was reduced, and a strong stratification re-established. Whereas,
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during the falling river flow and the salt-wedge intrusion there was no noticeable
change in the entrainment or the stratification strength.

Entrainment

A strong positive correlation was found between entrainment velocities and river flow
rates. Field observations also showed a wide range of E for a narrow range of bulk
Richardson numbers. Surprisingly, this is in contrast to many entrainment laws that
show how E is reduced with increasing Ri. However, E indicated a strong negative
correlation with the ratio of squared buoyancy frequency to interfacial shear velocity,
which can qualitatively be related to the gradient Richardson number. This was
expected since gradient parameters are more relevant than bulk parameters.

The analysis also showed that an adequate prediction law can still be formulated
based on bulk Richardson numbers when combined with an average friction factor, in
particular Ri−2λ̃5/2. Entrainment at the interface is clearly not influenced only by
bulk flow conditions, but also by the shear stress at the channel bed and interface,
which may be the main source of turbulent energy production.

Interfacial friction

Interfacial friction has proved to be one of the most important parameters governing
numerical solutions of a salt-wedge profile. In this thesis, the interfacial friction
factor was calibrated to fit the field observations. When compared to the Arita and
Jirka’s friction law, fitted values showed a much wider range of values than expected.
Furthermore, analysis showed that λi may increase with Reynolds number, which is
a first confirmation that even qualitative differences exist between laboratory and
field conditions. Finally, a new empirical equation was found, linking λi with ReRi3,
which shows good predictive capabilities in the Rječina River estuary.

A general mechanism of interfacial processes in the Rječina River estuary can be
described as follows: the upper layer velocity and interfacial shear velocity increase
with river flow rate, which intensifies vertical mixing and therefore diffuses the
interfacial layer. Furthermore, it seems that vertical mixing increases the apparent
roughness at the interface and also the interfacial friction factor. Therefore, a positive
correlation was observed between λi and both Q and Re. This is, however, only an
assumption, and without direct observations of the velocity profile and the Reynolds
stress no definite claims can be made.
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9.2 Future work

The numerical model used in this thesis, although extended to include irregular
geometry, friction, and entrainment, is still a simplified approximation of the salt-
wedge dynamics. One of the main assumptions in the proposed model are constant
densities in both layers that seem unaffected by the entrainment. Therefore, the
model could be extended by coupling additional advection-diffusion equations for salt
concentration, so that density is allowed to vary in both space and time.

Another simplification is the assumption of zero interfacial thickness. Field
observations in the Rječina River estuary showed that the interfacial thickness may
develop up to half of the upper layer thickness. Furthermore, in the time-dependant
case, under highly variable river flow, the interfacial layer thickness increased even
more. Including a third intermediate layer would therefore significantly improve
the model performance.

And finally, considering the numerical accuracy, an extension to a higher-order
numerical scheme should also be a welcomed improvement.

The quantification of the main interfacial physical processes, namely entrainment
and interfacial friction, seems to remain an open issue. There are still no reliable
and unified parametrisations that can accurately predict neither entrainment rate
or interfacial friction factor based on bulk flow parameters. Additional experiments
at sufficiently large scale or controlled field observations are clearly needed to better
understand the interfacial processes in salt-wedge estuaries.
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A
Additional numerical results

Chapter 7.1.2 presented only three numerical results of salt-wedge profiles compared
to field observations in the Rječina River estuary. Therefore, the following figures
show the numerical results for all 22 cases corresponding to the flow conditions
detailed in Table 7.1 and fitted data presented in Table 8.1. The FDM steady
numerical model was used here, the interfacial friction factor was assumed to be
constant along the wedge, and the best fit was determined by the visual inspection
and by the smallest RMSE (Eq. 4.7).
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A. Additional numerical results
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Figure A.1: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
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A. Additional numerical results
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Figure A.2: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
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A. Additional numerical results
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Figure A.3: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
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A. Additional numerical results
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Figure A.4: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
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A. Additional numerical results
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Figure A.5: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
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A. Additional numerical results
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Figure A.6: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
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A. Additional numerical results
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Figure A.7: Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .

144



List of abbreviations and symbols

1D . . . . . . . . One-dimensional.
2D . . . . . . . . Two-dimensional.
3D . . . . . . . . Three-dimensional.
ADCP . . . . . Acoustic Doppler Current Profiler.
ASL . . . . . . . Above sea-level.
C-property . . . Conservation Property.
CC . . . . . . . . Correlation Coefficient.
CFL . . . . . . . Courant-Friedrich-Lewy.
DTM . . . . . . Digital Terrain Model.
FDM . . . . . . Finite Difference Method.
FEM . . . . . . Finite Element Method.
FVM . . . . . . Finite Volume Method.
GPS . . . . . . . Global Positioning System.
HPP . . . . . . . Hydro-Power Plant.
K-H . . . . . . . Kelvin-Helmholtz.
MAE . . . . . . Mean Absolute Error.
No . . . . . . . . Number.
ODE . . . . . . . Ordinary Differential Equation.
PDE . . . . . . . Partial Differential Equation.
RHS . . . . . . . Right-Hand Side.
RMSE . . . . . Root Mean Square Error.
SS . . . . . . . . Skill Score.
SWE . . . . . . Shallow Water Equation.
WSS . . . . . . . Water Supply System.

145



List of abbreviations and symbols

Symbol Dimensions Description

A L2 Wetted cross-section area
B − Two-layer coupling matrix
C L−3 M−1 T3 I2 Electrical conductivity
E − Entrainment rate
E∗ − Shear entrainment rate
F0 − River densimetric Foude number
Fr − Froude number
Fd − Densimetric Froude number
H L Total water depth
H0 L River depth
J − Jacobian matrix of the flux
K − Matrix of eigenvectors
K − Keulegan number
L L Length (of the salt-wedge)
M − Number of nodes in FDM or cells in FVM
N T−1 Brünt-Väisälä or buoyancy frequency
P − Upwind projection matrix
P L Wetted cross-section perimeter
Q L3 T−1 Flow rate
Q − Jacobian matrix for coupled two-layer system
R2 − Coefficient of determination
Rh L Hydraulic radius
Re − Reynolds number
Ri − Bulk Richardson number
Ri∗ − Shear Richardson number
Ricr − Critical Richardson number
Rig − Gradient Richardson number
S − Practical salinity
Sh T−1 Shear stress expressed as a spatial derivation of a

vertical velocity profile
T K Temperature
Xmod Computed (modelled) quantity
Xobs Observed quantity

b L Channel bed elevation
f − Flux vector
g − Irregular geometry source term vector
g L T−2 Acceleration of gravity
h L Layer thickness
i − Spatial index
j − Layer index
n − Time index
nM T L−1/3 Manning’s roughness coefficient
p M L−1 T−2 Pressure
q L2 T−1 Flow rate per unit width

146



List of abbreviations and symbols

r − Ratio of upper to lower layer density
s − Friction and entrainment source term vectors
t T Time coordinate
v − Cross-section width source term vector
u L T−1 Velocity
u∗ L T−1 Shear velocity
w − Vector of conserved variables
we L T−1 Entrainment velocity
x L Horizontal axis coordinate
z L Vertical coordinate

∆x L Spatial step
∆t T Temporal step
δi L Interfacial layer thickness
δu L Shear layer thickness
ε − Correction parameter in the Harten regularization
ε L Tolerance parameter for the disappearance of the

lower layer in a FVM
η L Free water-surface elevation
λ − Friction factor (equal to 1/8 of the Darcy-Weisbach

friction factor)
λi − Interfacial friction factor
λb − Channel bed friction factor
λw − Channel bed/wal friction factor
ν L2 T−1 Kinematic viscosity
ξ L Tolerance parameter for the transition from two-layer

to a single layer flow in FDM
ρ M L−3 Volumetric mass density
σ L Cross-section vector
σ L Cross-section width
τ M L−1 T−2 Shear stress
τT M L−1 T−2 Turbulent shear stress
τV M L−1 T−2 Viscous shear stress
τb M L−1 T−2 Bed shear stress
τi M L−1 T−2 Interfacial shear stress
τs M L−1 T−2 Surface shear stress
ϕ − Non-dimensional depth
χ − Non-dimensional length
Ψ − Diagonal matrix with eigenvalues for Jacobian matrix
ψ − Eigenvalues for Jacobian matrix

147



List of Tables

6.1 Empirical coefficients ai, bi, and ci for computing salinity from measured
conductivity, temperature and pressure [33] . . . . . . . . . . . . . . . . . . 81

6.2 Empirical coefficients di, ei, and k for computing salinity from measured
conductivity, temperature and pressure [33] . . . . . . . . . . . . . . . . . . 81

6.3 Empirical coefficients ai, bi, and di for computing density of salt-water from
measured salinity and temperature at atmospheric pressure [66] . . . . . . . 81

6.4 Empirical coefficients ai and bi for computing dynamic viscosity µ from
measured temperature at atmospheric pressure [47] . . . . . . . . . . . . . . 83

7.1 Observed values in the Rječina River estuary for different flow conditions. . 95

8.1 Fitted friction factors and computed mixing and flow parameters in the
Rječina River estuary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

148



List of Figures

1.1 Types of estuaries depending on the intensity of vertical mixing: (a) highly
stratified estuary, (b) partially mixed estuary, and (c) well-mixed estuary, as
described in [30] and [85]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Longitudinal scheme of a two-layer salt-wedge flow, as defined by Schijf and
Schönfeld [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Arita and Jirka’s [2] friction law; interfacial friction factor λi dependence on
ReFd2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Cenedese and Adduce’s [24] entrainment law; entrainment rate E dependence
on densimetric Froude number Fd. . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Longitudinal scheme of a two-layer salt-wedge flow including friction and
entrainment in channels with irregular geometry. . . . . . . . . . . . . . . . 22

3.2 Cross-section scheme of a two-layer salt-wedge flow including friction and
entrainment in channels with irregular geometry. . . . . . . . . . . . . . . . 22

3.3 Control volume of a two-layer flow in channels with irregular geometry. . . 24

4.1 Implicit trapezoidal method interpretation. . . . . . . . . . . . . . . . . . . 39
4.2 Graphical interpretation of a piecewise constant function wn(x). . . . . . . 43
4.3 Graphical interpretation of a three-point explicit finite volume method. . . 44
4.4 Longitudinal section of the channel corresponding to water at rest. . . . . . 55
4.5 Longitudinal section of the channel corresponding to water at rest with

wet-dry transition in the lower layer. . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Wet-dry fronts: (a) bed elevation redefinition and reflective condition is

needed, (b) and (c) no redefinition needed. . . . . . . . . . . . . . . . . . . . 57

5.1 Prismatic channel geometry defined by (a) horizontal bed and (b) rectangular
cross-sections of constant width. . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Numerical solutions for the arrested salt-wedge obtained by a steady FDM and
a time-dependant FVM model, and their agreement with the exact solution
for (a) Q = 1.6 m3 s−1, (b) Q = 2.1 m3 s−1 and (c) Q = 3.0 m3 s−1. . . . . 62

5.3 Non-prismatic channel geometry defined by (a) variable bed slope and (b)
rectangular cross-sections of variable width. . . . . . . . . . . . . . . . . . . 63

5.4 Numerical solutions for the arrested salt-wedge obtained by a steady FDM
and a time-dependant FVM model, for (a) Q = 4 m3 s−1, (b) Q = 9 m3 s−1

and (c) Q = 18 m3 s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 C-property verification test for water at rest in an irregular channel: (a) bed

elevation, (b) channel width, (c) and (d) initial conditions (water depth and
flow rate), and (e) and (f) results after t = 10 s (water depths and flow rates). 66

149



List of Figures

5.6 Extended C-property verification test for water at rest in an irregular channel
with lower layer wet-dry transitions: (a) and (b) initial conditions (water
depths and flow rates), (c) and (d) results at t = 1 s when the original source
terms are considered and spurious oscillations appear, and (e) and (f) results
at t = 10 s when the source term approximation is applied. . . . . . . . . . 68

5.7 Sensitivity of the numerical model on the interfacial friction factor λi, for
Q = 2.0 m3 s−1 and r = 0.975, without bed friction or entrainment. . . . . . 70

5.8 Sensitivity of the numerical model on the Manning’s roughness coefficient
nM, for Q = 2.0 m3 s−1, λi = 10−3 and r = 0.975, without entrainment. . . 71

5.9 Sensitivity of the numerical model on the entrainment velocity we (m s−1),
for Q = 2.0 m3 s−1, λi = 10−3 and r = 0.975, without bed friction. . . . . . 71

5.10 The resulting upper and lower layer flow rates for different entrainment
velocities we (m s−1), for Q = 2.0 m3 s−1, λi = 10−3 and r = 0.975, without
bed friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.11 Sensitivity of the numerical model on the density ratio r, for Q = 2.0 m3 s−1,
λi = 10−3, without bed friction or entrainment. . . . . . . . . . . . . . . . . 72

6.1 Map of the Rječina River estuary with sampling points and inflow locations 76
6.2 Inter-annual variations of the minimum, mean and maximum monthly flow

rates at Tvornica gauging station (1999-2015) . . . . . . . . . . . . . . . . . 76
6.3 Daily minimum and maximum sea-level amplitudes at Bakar tidal gauging

station in 2015 (according to [45]). . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Digital orthophoto of the Rječina River estuary with sampling points. . . . 79
6.5 Practical salinity S dependence on conductivity C (mS cm−1) and temperature

T (◦C) at 1 m depth, computed from [33]. . . . . . . . . . . . . . . . . . . . 82
6.6 Density ρ (kg m−3) dependence on practical salinity S and temperature T

(◦C), computed from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 Salinity profiles for flow rate Q = 17.2 m3 s−1: (a) observed salinity S

profile, (b) linearized salinity profile, (c) interface thickness and depth, and
(d) approximated constant salinity S in the upper and lower layer. . . . . . 84

6.8 Rating curve at Tvornica gauging station obtained from field measurements
(2013-2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 ADCP instrument used to measure flow rates and velocities in Rječina River
estuary: (a) Teledyn StreamPro and (b) Nortek Aquadopp. . . . . . . . . . 85

6.10 Scheme of a two-layer box model for estimating the vertical mixing in salt-
wedge estuaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11 Depth measurements in the lower reaches of Rječina River. . . . . . . . . . 88
6.12 Longitudinal section of the Rječina River estuary with bed elevations and

locations of sampling points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.13 The characteristic channel cross-sections in the Rječina River estuary: (a)

near the mouth (0+250 m), (b) in the middle reaches (0+325 m), and (c) in
the upper reaches (0+650 m). . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.14 Step-by-step illustration of interpolation method for deriving DTM for a
segment of the Rječina River estuary (from 0+440 m to 0+550 m): (a)
measured cross sections, (b) interpolated profile lines, (c) interpolated cross
sections along the centreline, and (d) digital terrain model. . . . . . . . . . 90

150



List of Figures

6.15 Tabulated array of cross-section geometrical values for: (a) wetted area A,
(b) channel width σ, and (c) wetted perimeter P . . . . . . . . . . . . . . . . 92

7.1 Salinity S (solid) and temperature T (dashed) profiles observed in the Rječina
River estuary near the mouth (P3) for different river flow rates Q. . . . . . 96

7.2 Numerical solutions of the salt-wedge shape compared against field obser-
vations, for different river flow rates Q. Both λfiti (fitted interfacial friction
factor) and λAJi (computed from the Arita and Jirka model, Eq. 2.9) were
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Numerical solutions of the arrested salt-wedge shape compared against field
observations, for different river inflow rates Q. . . . . . . . . . . . . . . . . 100

7.4 Velocity u (solid) and salinity S (dashed) profiles observed in the Rječina
River estuary near the mouth (P3): (a) to (c) salt-wedge intrusion caused
by a decrease in the river flow rate from 10 to 4.6 m3 s−1, and (d) to (f)
salt-wedge receding towards the mouth caused by an increase in the river
flow rate from 4.2 to 13.4 m3 s−1. . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Boundary conditions for a time-dependant salt-wedge case: (a) upstream flow
rate and (b) downstream sea-level. . . . . . . . . . . . . . . . . . . . . . . . 104

7.6 Numerical solutions of the time-dependant salt-wedge profile compared against
field observations, at different time steps, for variable river flow rate Q. . . 105

7.7 Computed and observed changes of flow rates per unit width in the upper
(q1) and lower (q2) layer, near the mouth (P3, Fig. 6.1). . . . . . . . . . . . 106

8.1 Dependence of the: (a) upper layer thickness h1, (b) velocity difference ∆u, (c)
densimetric upper layer Froude number Fd, (d) squared buoyancy frequency
N2, (e) entrainment velocity we and (f) interfacial shear velocity u∗, on the
river flow rate Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 Dependence of entrainment rate E on (a) bulk Richardson number Ri (with
comparison to equations by Buch [13], Christodoulou [26], Moore and Long
[69], Narimousa and Fernando [71], Pedersen [74], and Walker and Hamill
[103]) and (b) densimetric Froude number Fd (with comparison to Cenedese
and Adduce [24]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Dependence of entrainment rates E on: (a) squared buoyancy frequency N2,
(b) interfacial shear velocity u∗, (c) non-dimensional ratio of stratification to
shear N2/(u2

∗/ν)2, and (d) a combination of bulk Richardson numbers and
average interfacial friction factors Ri−2λ̃5/2. . . . . . . . . . . . . . . . . . 113

8.4 Dependence of the interfacial friction factor λi on: (a) entrainment rate E,
Keulegan number ReFd2 with the Arita and Jirka model [2] (solid lines
for different Fd), (c) Reynolds number Re and (d) best fit combination of
parameters ReRi3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5 Comparison of the computed and observed upper layer thickness h1 at a
control section assumed to be located at the last bridge near the mouth (P1,
Fig. 6.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.6 Observed density in the upper ρ1 and lower ρ2 layer and maximum squared
buoyancy frequency N2, averaged along the salt-wedge, during a simulation
of a time-dependant flow observed on 1 July 2015. . . . . . . . . . . . . . . 119

151



List of Figures

8.7 Computed movement of the salt-wedge front and corresponding propagation
rates during the variable flow observed on 1 July 2015. . . . . . . . . . . . . 120

A.1 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.4 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.5 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.6 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.7 Numerical solutions of the salt-wedge shape compared against field observa-
tions, for different river flow rates Q and fitted interfacial friction factor λfiti .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

152



Curriculum vitae

153



Nino Krvavica

Born on 25 December 1982 in Rijeka, Croatia. Attended Andrija Mohorovičić high
school in Rijeka from 1997 to 2001. Graduated from the University of Rijeka in
2007 and received a master’s degree from the Faculty of Civil Engineering. The
master thesis titled Reinforced Concrete Jetty in the Volosko Port, supervised by
Prof. Nenad Ravlić, was nominated for the Croatian Waters Award for the best
master’s thesis in Civil engineering.

After graduation, joined the Institute IGH to work on design documentation
for construction of coastal structures, water supply and sewage systems, and gain
experience in numerical modelling studies. Time spent there resulted in co-authoring
first two papers presented at international conferences in Hong Kong, China in 2008
and in Athens, Greece in 2010.

In 2009 entered the postgraduate doctoral study programme in Civil Engineering
at the University of Rijeka. The same year started working part time as a teaching
assistant in the Urban engineering programme course at the Faculty of Civil Engi-
neering. After leaving the position at the Institute IGH, in 2011 joined the Faculty
of Civil Engineering at the University of Rijeka as a full-time research assistant on
the scientific project Hydrology of Sensitive Water Resources in Karst, financed by
the Ministry of Science, Education and Sports of the Republic of Croatia, under the
supervision of Prof. Nevenka Ožanić, and continued working as a teaching assistant
on several courses in the Hydraulic and Urban engineering programme.

During this time also participated in the bilateral Japanese-Croatian scientific
project Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides
and Floods in Croatia (project manager Prof. Nevenka Ožanić) and international
project Networking for Drinking Water Supply in Adriatic Region - DRINKADRIA
(project manager Prof. Barbara Karleuša). In 2013 spent two months at the University
of Kyoto, Japan under the supervision of Prof. Yosuke Yamashiki, researching flood
predictions by meteorological radars and physical modelling of debris flow. In June
2016 visited the Hydraulic laboratory of the Faculty of Civil Engineering at the
University of Zagreb, Croatia, and collaborated with Prof. Dalibor Carević on
the scientific project Ekomarina.

154



List of publications

[1] Gajić-Čapka, M., Ožanić, N., and Krvavica, N. Estimation of maximum
short-term precipitation over the Rijeka region. EGFOS 5, 9 (2014), 49–59.

[2] Karleuša, B., Ožanić, N., Rubinić, J., Radman, I., Dragičević, N.,
Volf, G., Sušanj, I., Krvavica, N., Ružić, I., and Crnko, T. Analysing
the Possibilities of Drinking Water Supply Improvement in Adriatic Region
Through the DRINK ADRIA Project. Zbornik radova Građevinskog fakulteta
Sveučilišta u Rijeci 17 (2014), 55–67.

[3] Karleuša, B., Rubinić, J., Radman, I., Volf, G., and Krvavica,
N. Cross-Border Water Resources Management in Present Conditions and
for Future Scenarios. In International Symposium Cross-border drinking water
management (Rijeka, Croatia, 2016), B. Karleuša and I. Sušanj, Eds., Faculty of
Civil Engineering, University of Rijeka, pp. 59–90.

[4] Krvavica, N., and Ilić, S. Scour around foundations for offshore wind turbines.
Zbornik radova Građevinskog fakulteta Sveučilišta u Rijeci 15 (2012), 37–57. (In
Croatian).

[5] Krvavica, N., Kožar, I., Travaš, V., and Ožanić, N. Numerical modelling
of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume
solver and field validation. Journal of Hydrology and Hydromechanics 65, 1 (2017),
1–11. (In Press).

[6] Krvavica, N., Mofardin, B., Ružić, I., and Ožanić, N. Measurement
and analysis of salinization at the Rječina estuary. Građevinar 64, 11 (2012),
923–933.

[7] Krvavica, N., and Mujaković, N. Solving the problem of water wave motions
due to disturbance originating at the surface. Zbornik radova Građevinskog
fakulteta Sveučilišta u Rijeci 14 (2011), 11–29. (In Croatian).

[8] Krvavica, N., and Ravlić, N. Non-conservative approach to design of jetties
in exposed locations. Zbornik radova Građevinskog fakulteta Sveučilišta u Rijeci
12 (2009), 35–54. (In Croatian).

[9] Krvavica, N., Ružić, I., and Ožanić, N. Analysis of rainfall intensity
assessment using the X-band radar. Hrvatske vode 24 (2016), 137–146. (In
Croatian).

155



List of publications

[10] Krvavica, N., Ružić, I., Ožanić, N., Yamashiki, Y., Karabaić, I.,
Mofardin, B., and Škoda, M. Daily variability of salinity and temperature in
the Rječina Estuary. In 2nd Project Workshop on Risk Identification and Land-
Use Planning for Disaster Mitigation of Landslides and Floods (Rijeka, Croatia,
2011), N. Ožanić and Ž. Arbanas, Eds., University of Rijeka, pp. 109–112.

[11] Krvavica, N., and Travaš, V. A comparison of method of characteristics
and Preissmann scheme for flood propagation modeling with 1D Saint-Venant
equations. Acta Hydrotechnica 27, 46 (2015), 1–12.

[12] Krvavica, N., Travaš, V., and Ožanić, N. Three-layer numerical model for
stationary flow in a stratified estuary. In Zbornik radova šestog susreta Hrvatskog
društva za mehaniku (Rijeka, Croatia, 2014), G. Jelenić and M. Gaćeša, Eds.,
Croatian Society of Mechanics. (In Croatian).

[13] Krvavica, N., Travaš, V., and Ožanić, N. A field study of interfacial
friction and entrainment in a microtidal salt-wedge estuary. Environmental Fluid
Mechanics (2016). (In Press).

[14] Krvavica, N., Travaš, V., and Ožanić, N. Salt-wedge response to variable
river flow and sea-level rise in the microtidal Rječina River Estuary, Croatia.
Journal of Coastal Research (2016). (In Press).

[15] Krvavica, N., Travaš, V., Ravlić, N., and Ožanić, N. Hydraulics of
Stratified Two-layer Flow in Rječina Estuary. In Landslide and Flood Hazard
Assessment (Zagreb, Croatia, 2013), S. Mihalić Arbanas and Ž. Arbanas, Eds.,
Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb
and Faculty of Civil Engineering, University of Rijeka, pp. 257–261.

[16] Ožanić, N., Karleuša, B., Dragičević, N., Sušanj, I., Žic, E., Ružić,
I., and Krvavica, N. Disaster Mitigation of Floods and Landslides in Croatia
through Croatian-Japanese Collaboration. In Dani gospodarenja vodama 2013:
Napredak kroz znanost (Zagreb, Croatia, 2013), D. Bekić, Ed., Faculty of Civil
Engineering, University of Zagreb, pp. 63–93.

[17] Ožanić, N., Žic, E., Sušanj, I., Travaš, V., Ružić, I., Dragičević,
N., and Krvavica, N. Scientific equipment and research possibilities at the
Faculty of Civil Engineering of the University of Rijeka. In 6th Croatian Water
Conference with International participation - CROATIAN WATERS ON THE
INVESTMENT WAVES (Opatija, Croatia, 2015), D. Biondić, D. Holjević, and
M. Vizner, Eds., Croatian Waters, pp. 1425–1443.

[18] Peša, M., Fuis, I., Babić, S., and Krvavica, N. Road junction "Škurinje" -
application of digital photogrammety in watershed area modeling. Zbornik radova
Građevinskog fakulteta Sveučilišta u Rijeci 15 (2012), 125–138. (In Croatian).

156



List of publications

[19] Ravlić, N., and Krvavica, N. Hydraulic implications of non-standard
solutions in spatially constrained wastewater facilities. In Environmental
Hydraulics, Two Volume Set: Proceedings of the 6th International Symposium on
Enviornmental Hydraulics (ISEH) (Athens, Greece, 2010), G. Christodoulou and
I. Anastasios, Eds., CRC Press, pp. 1035–1040.

[20] Ravlić, N., Krvavica, N., and Mičetić, I. Modeling of internal hydraulics of
water storage tanks with complex geometry. In Proceedings of 2nd International
Symposium on Shallow Flows (Hong Kong, China, 2008), M. Ghidaoui and
Y. Tung, Eds., The Hong Kong University of Science and Technology, pp. 135–
139.

[21] Travaš, V., and Krvavica, N. Spectral and Monochromatic Approach to the
Definition of Hydrodynamic Load on Vertical Piles. Hrvatske vode 22, 87 (2014),
13–22. (In Croatian).

[22] Travaš, V., Krvavica, N., and Radman, I. Numerical analysis of hysteresis
in rating curves for open channel flow. International Journal for Engineering
Modelling 25, 1 (2012), 1–6.

[23] Travaš, V., Krvavica, N., and Rubeša, J. Modelling of the morphology
of open river beds for the implementation of a one-dimensional flow analysis.
Hrvatske vode 23, 92 (2015), 123–132. (In Croatian).

157


	Introduction
	Background and Motivation
	Hypothesis
	Objective of the thesis
	Thesis outline

	Literature review
	Two-layer hydraulic theory
	Arrested salt-wedge models
	Time-dependant salt-wedge models

	Interfacial processes
	Interfacial friction
	Entrainment


	Governing equations for two-layer flow in salt-wedge estuaries
	Governing equations for time-dependant salt-wedges
	Conservation of mass
	Conservation of linear momentum
	Vector form of the governing equations

	Governing equations for arrested salt-wedges
	System of ODEs for arrested salt-wedges
	Single ODE for arrested salt-wedges
	Analytical equation for arrested salt-wedges


	One-dimensional numerical schemes
	FDM for arrested salt-wedges
	Implicit trapezoidal method
	Boundary conditions for arrested salt-wedges
	Calibration of the interfacial friction factor i

	FVM for time-dependant salt-wedges
	FVM for hyperbolic conservation laws
	Godunov method and approximate Riemann solvers
	Modified Q-scheme for two-layer salt-wedge flow
	Wet-dry fronts in channels with irregular geometry
	Boundary conditions for time-dependant salt-wedges


	Numerical model performance assessment
	Code verification
	Comparison with analytical solutions
	Comparison between FDM and FVM models

	Well-balanced property of FVM model
	Verification of the C-property
	Verification of the extended C-property

	Numerical model sensitivity
	Influence of interfacial friction
	Influence of bed friction
	Influence of entrainment
	Influence of density ratio


	Field study in the Rjecina River estuary
	Rjecina River
	Adriatic Sea
	Field observations in the Rjecina River estuary
	Salinity, temperature and density
	Flow rates and velocities

	Knudsen’s hydrographic theory
	Channel bathymetry
	Digital terrain model
	Cross-section geometry parameters


	Application to the Rjecina River estuary 
	Results of arrested salt-wedges
	Field observations of arrested salt-wedges
	FDM results of arrested salt-wedges
	FVM results of arrested salt-wedges

	Results of time-dependant salt-wedges
	Fields observations of time-dependant salt-wedges
	FVM results of time-dependant salt-wedges


	Discussion of salt-wedge dynamics
	Discussion of interfacial processes
	Entrainment parametrisation
	Interfacial friction parametrisation

	Discussion of hydraulic control
	Discussion of stratification strength
	Discussion of salt-wedge propagation rates

	Conclusion
	Summary
	Numerical models
	Salt-wedge dynamics

	Future work

	Bibliography
	 Additional numerical results
	List of abbreviations and symbols
	List of Tables
	List of Figures
	List of publications



